Безопасность информационных систем

Содержание


Лекция 1. Концепции и аспекты обеспечения информационной безопасности

Понятия экономической и информационной безопасности. Ключевые вопросы ИБ. Виды угроз информационной безопасности и классификация источников угроз. Основные виды защищаемой информации. Правовое обеспечение информационной безопасности. Основные аспекты построения системы информационной безопасности.

Понятия экономической и информационной безопасности. Ключевые вопросы ИБ

Информация давно перестала быть просто необходимым для производства материальных ценностей вспомогательным ресурсом — она приобрела ощутимый стоимостный вес, который четко определяется реальной прибылью, получаемой при её использовании, или размерами ущерба, наносимого владельцу информации. Создание технологий и индустрии сбора, переработки, анализа информации и её доставки конечному пользователю порождает ряд сложных проблем. Одной из таких проблем является надежное обеспечение сохранности и установленного статуса информации (актуальности, полноты, непротиворечивости, конфиденциальности), циркулирующей и обрабатываемой в информационно-вычислительных системах и сетях, а также безопасность самих систем и технологий.

Современное развитие информационных технологий и, в частности, технологий Internet/Intranet, приводит к необходимости защиты информации, передаваемой в рамках рас-пределенной корпоративной сети, использующей сети открытого доступа. При использовании своих собственных закрытых физических каналов доступа эта проблема так остро не стоит, так как в эту сеть закрыт доступ посторонним. Однако выделенные каналы может себе позволить далеко не любая компания. Поэтому приходится довольствоваться тем, что есть в распоряжении компании. А есть чаще всего Internet. Поэтому приходиться изобретать способы защиты конфи-денциальных данных, передаваемых по фактически незащищенной сети.

Безопасность информационных технологий (ИТ) и систем (ИС) является одной из важнейших составляющих проблемы обеспечения экономической безопасности организации. Переход к новым формам государственного и хозяйственного управления экономикой в России в условиях дефицита и противоречивости правовой базы породил целый комплекс проблем в области защиты данных, информации, знаний и самих ИКТ. Это и своеобразие становления рыночных отношений, и отсутствие обоснованных концепций реформ, и отставание в области применения современных информационных технологий в управлении и производстве. Обострение этих проблем выдвинули на первый план вопросы обеспечения национальной, социальной и корпоративной безопасности, в том числе и в информационной сфере.

В 1983 году министерство обороны США выпустило "Оранжевую книгу" — "Критерии оценки надежных компьютерных систем" ["Trusted Computer System Evaliation Criteria (TCSEC)". — USA, Department of Defense, 5200.28-STD, 1993], положив тем самым начало систематическому формированию знаний об информационной безопасности (ИБ) за пределами правительственных ведомств.

Во второй половине 1980-х годов аналогичные по назначению документы были изданы в ряде европейских стран [Information Technology Security Evaluation Criteria (ITSEC). Harmonised Criteria of France-Germany-Netherlands-United Kingdom. — Department of Trade and Industry, London, 1991].

В 1992 году в России Государственная техническая комиссия при Президенте РФ (Гостехкомиссия РФ) издала серию документов, посвященных проблеме защиты от несанкционированного доступа.

"Оранжевая книга" и последующие подобные издания были ориентированы в первую очередь на корпоративных разработчиков программного обеспечения и информационных систем, а не на пользователей или системных администраторов. Динамичное развитие вычислительной техники, компьютерных технологий и широкое применение их в бизнесе показало, что информационная безопасность является одним из важнейших аспектов интегральной безопасности на всех уровнях — национальном, корпоративном или персональном. Для иллюстрации можно привести несколько примеров.

В 2012 году в США года был опубликован годовой отчет "Компьютерная преступность и безопасность: проблемы и тенденции" ("Issues and Trends: 2012 CSI/FBI Computer Crime and Security Survey"). В отчете отмечается увеличивающийся рост числа компьютерных преступлений (39% из числа опрошенных). Информационные системы 28% респондентов были взломаны внешними злоумышленниками. Атакам через Internet подвергались 77%, в 59% случаях отмечались нарушения со стороны собственных сотрудников. В большом числе компаний (31%) вообще не следили за состоянием безопасности своих компьютерных и сетевых систем, полагаясь на защитные модули компьютерных программ и приложений. В аналогичном отчете, опубликованном в апреле 2013 года, тенденция осталась прежней:

Согласно результатам совместного исследования Института информационной безопасности США и ФБР, в 2012 году ущерб от компьютерных преступлений достиг более 900 миллионов долларов, что на 34% больше, чем в 2011 году. Каждое компьютерное преступление наносит ущерб примерно в 200-300 тысяч долларов. Потери крупнейших компаний, вызванные компьютерными вторжениями, продолжают увеличиваться, несмотря на рост затрат на средства обеспечения безопасности ("Internet Week", 2013 г.).

Наибольший ущерб, по исследованиям Gartner Group, нанесло манипулирование доступом во внутреннее информационное пространство: кражи данных и информации из корпоративных сетей и баз данных, подмена информации, подлоги документов в электронном виде, промышленный шпионаж. Наряду с возрастанием числа внешних атак в последние годы отмечается резкий рост распространения вирусов через Интернет.

Однако, увеличение числа атак и распространение вирусов еще не самая большая неприятность — постоянно обнаруживаются новые уязвимые места в программном обеспечении. В информационных письмах Национального центра защиты инфраструктуры США (National Infrastructure Protection Center USA — NIPC) сообщается, что за период с 2000 по 2012 годы выявлено несколько десятков существенных проблем с программным обеспечением, риск использования которых оценивается как средний или высокий. Среди "пострадавших" операционных платформ — почти все разновидности ОС Unix, Windows, Mac OS, .NET. В таких условиях специалисты и системы информационной безопасности должны уметь противостоять внешним и внутренним угрозам, выявлять проблемы в системах защиты программного обеспечения и на основе соответствующей политики вырабатывать адекватные меры по компенсации угроз и уменьшению рисков.

При анализе проблематики, связанной с информационной безопасностью (ИБ), необходимо учитывать специфику данного аспекта безопасности, состоящую в том, что информационная безопасность есть составная часть разработки, внедрения и эксплуатации информационных систем и технологий — области, развивающейся беспрецедентно высокими темпами.

К сожалению, современная технология программирования не позволяет создавать полностью безошибочные и безопасные программы. Поэтому следует исходить из того, что необходимо создавать надежные системы ИБ с привлечением не стопроцентно надежных программных компонентов (программ)!

В принципе, это возможно, но требует соблюдения определенных принципов архитектурного построения программных комплексов и контроля состояния защищенности программно-аппаратного обеспечения, телекоммуникационных устройств и сетей на всем протяжении жизненного цикла ИС.

Экономическая и информационная безопасность. Составляющие информационной безопасности

Для чего необходимы знания по основам информационной безопасности? Как строить безопасные, надежные системы и сети? Как поддерживать режим безопасности информации в системах и сетях? Бурное развитие техники, новейших компьютерных технологий и широкое применение их в бизнесе показало, что информационная безопасность является одним из важнейших аспектов интегральной безопасности, на каком бы уровне ни рассматривать эту проблему — национальном, корпоративном или персональном.

Необходимость реализации, сопровождения и развития систем ИБ — это оборотная сторона широкого использования информационных технологий, так как наступление нового этапа развития ИТ закономерно приводит к быстрому падению уровня информационной безопасности (рис. 1.1).

Изменение уровня информационной безопасности в соответствием с уровнем развитием ИТ


Рис. 1.1.  Изменение уровня информационной безопасности в соответствием с уровнем развитием ИТ

Отметим ещё одну существенную — можно сказать парадоксальную — особенность развития информационных технологий: технологии постоянно усложняются, однако квалификация нарушителей и злоумышленников понижается (рис. 1.2). Это происходит оттого, что новые средства создания программного кода и сетевые технологии изначально строятся так, чтобы они были доступны пользователям, не обладающим высокой профессиональной подготовкой.

Соотношение возрастания сложности ИТ и квалификации злоумышленников


Рис. 1.2.  Соотношение возрастания сложности ИТ и квалификации злоумышленников

В "Доктрине информационной безопасности Российской Федерации" защита от несанкционированного доступа к информационным ресурсам, обеспечение безопасности информационных и телекоммуникационных систем выделены в качестве важных составляющих национальных интересов РФ в информационной сфере. К настоящему времени сложилась общепринятая точка зрения на концептуальные основы ИБ. Суть ее заключается в том, что подход к обеспечению ИБ должен быть комплексным, сочетающим меры следующих уровней:

Главными принципами обеспечения безопасности в соответствии с законом РФ "О безопасности" являются: законность, соблюдение баланса жизненно важных интересов личности, общества и государства, взаимная ответственность перечисленных субъектов, интеграция системы безопасности в рамках компании, общества, государства, взаимодействие с международными системами безопасности.

Экономическая безопасность предпринимательской деятельности и хозяйствующего субъекта можно определить как "защищенность жизненно важных интересов государственного или коммерческого предприятия от внутренних и внешних угроз, защиту кадрового и интеллектуального потенциала, технологий, данных и информации, капитала и прибыли, которая обеспечивается системой мер правового, экономического, организационного, информационного, инженерно-технического и социального характера" [Грунин О. А., Грунин С. О., 2002].

Стратегия обеспечения экономической безопасности Российской Федерации строится на основании официально действующих правовых и нормативных актов, основными из которых являются:

Исходя из необходимости достижения целей обеспечения экономической безопасности предпринимательской деятельности, можно выделить следующие основные проблемные направления:

В современных условиях коммерческий успех любого предприятия в большой степени зависит от оперативности и мобильности бизнеса, от своевременности и быстроты принятия эффективных управленческих решений. А это невозможно без надежного и качественного информационного взаимодействия между различными участниками бизнес-процессов. Сегодня предприятия в качестве среды для информационного обмена все чаще используют открытые каналы связи сетей общего доступа (Internet) и внутреннее информационное пространство предприятия (Intranet). Открытые каналы Internet/Intranet намного дешевле по сравнению с выделенными каналами. Однако сети общего пользования имеют существенный недостаток — открытость и доступность информационной среды. Компании не могут полностью контролировать передачу и приём данных по открытым каналам и при этом гарантировать их целостность и конфиденциальность. Злоумышленникам не составляет особого труда перехватить деловую информацию с целью ознакомления, искажения, кражи и т. п.

Общая структура информационной безопасности


Рис. 1.3.  Общая структура информационной безопасности

Информационная безопасность. В общем случае ИБ можно определить как "защищенность информации, ресурсов и поддерживающей инфраструктуры от случайных или преднамеренных воздействий естественного или искусственного характера, которые могут нанести неприемлемый ущерб субъектам информационных отношений — производителям, владельцам и пользователям информации и поддерживающей инфраструктуре" [Галатенко В. А., 2006].

Информационная безопасность не сводится исключительно к защите от несанкционированного доступа к информации — это принципиально более широкое понятие, включающее защиту информации, технологий, систем, материальных и нематериальных активов и персонала (рис. 1.3).

Требования по обеспечению безопасности в различных аспектах информационной деятельности могут существенно отличаться, однако они всегда направлены на достижение следующих трёх основных составляющих информационной безопасности (рис. 1.4):

Основные составляющие информационной безопасности


Рис. 1.4.  Основные составляющие информационной безопасности

Деятельность по обеспечению информационной безопасности направлена на то, чтобы не допустить, предотвратить или нейтрализовать:

Для большинства государственных и коммерческих организаций вопросы защиты от несанкционированного доступа и сохранности данных и информации имеют более высокий приоритет, чем проблемы локальных неисправностей компьютерного и сетевого оборудования. Напротив, для многих открытых организаций (общественных, учебных) защита от несанкционированного доступа к информации стоит по важности отнюдь не на первом месте. Таким образом, правильный с методологической точки зрения подход к проблемам информационной безопасности начинается с выявления субъектов информационных отношений и интересов этих субъектов, связанных с использованием информационных технологий и систем (ИТ/ИС).

Ключевые вопросы информационной безопасности

Современное развитие информационных технологий и, в частности, технологий Internet/Intranet, приводит к необходимости всесторонней защиты информационных технологий и систем, данных и информации, передаваемой в рамках распределенной корпоративной сети, использующей внутренние и внешние сети открытого доступа.

Оценка реальной ситуации сводится в большинстве случаев к ответу на следующие ключевые вопросы, составляющие системную основу обеспечения информационной безопасности:

Ключевые вопросы информационной безопасности


Рис. 1.5.  Ключевые вопросы информационной безопасности

Первые три вопроса непосредственным образом относятся к проблеме оценки реальных угроз (рис. 1.5) [Лукацкий А. В., 2007].

Надо ли защищаться и что следует защищать?

Ответов на этот вопрос неоднозначен — многое зависит от структуры, области деятельности и целей компании. Для одних первоочередной задачей является предотвращение утечки информации (маркетинговых планов, перспективных разработок, величина и распределение прибыли и т.д.) к конкурентам. Другие могут пренебречь конфиденциальностью своей информации и сосредоточить свое внимание на ее целостности (например, для научно-исследовательских организаций, имеющих открытые Web-серверы). Для провайдера Interner-услуг, оператора связи или общедоступного справочного сервера на первое место поднимается задача обеспечения максимальной доступности и безотказной работы корпоративных информационных систем — первейшей задачей является именно обеспечение безотказной работы всех (или наиболее важных) узлов своей информационной системы. Расставить такого рода приоритеты и определить необходимость и объекты защиты можно только в результате анализа деятельности компании.

При интеграции индивидуальных и корпоративных информационных систем и ресурсов в единую информационную инфраструктуру определяющим фактором является обеспечение должного уровня информационной безопасности для каждого субъекта, принявшего решение войти в это пространство. В едином информационном пространстве должны быть созданы все необходимые предпосылки для установления подлинности пользователя (субъекта), подлинности содержания и подлинности сообщения (т.е. созданы механизмы и инструмент аутентификации). Таким образом, должна быть создана система информационной безопасности, которая включает необходимый комплекс мероприятий и технических решений по защите:

Особо следует отметить задачи обеспечения безопасности разрабатываемых и модифицируемых систем в интегрированной информационной среде, т. к. в процессе модификации неизбежно возникновение дополнительных ситуаций незащищенности системы. Для решения этой проблемы наряду с общими методами и технологиями следует отметить введение ряда требований к разработчикам, создания регламентов внесения изменений в системы, а также использования специализированных средств.

От кого надо защищаться?

В абсолютном большинстве случаев ответом на этот вопрос является фраза: "Как от кого - конечно, от хакеров!". Исследования показали, что, по мнению большинства российских предпринимателей, основная опасность исходит от внешних злоумышленников, которые проникают в компьютерные системы банков и корпораций, перехватывают управление бизнес-процессами, "взламывают" сайты, запускают "троянских коней". Такая опасность существует и нельзя её недооценивать. В системах информационной защиты обязательно должны быть соответствующие модули защиты от внешних угроз подобного рода.

Ранжированные ИТ-угрозы


Рис. 1.6.  Ранжированные ИТ-угрозы

Но эта опасность часто преувеличена. До 75-85% всех компьютерных угроз и преступлений связаны с внутренними нарушениями, т.е. осуществляются действующими или уволенными сотрудниками компании. По исследованиям 2013 года в 82% случаев источником реальных атак были сотрудники компаний. Для сравнения: хакеры, атакующие корпоративные сети извне, оказывались источником атак в 73% случае. На рис. 1.6 показаны усредненные данные по ранжированию ИТ-угроз за последние три года.

В публикациях достаточно примеров, когда сотрудник компании, считая, что его на работе не ценят, совершает компьютерное или информационное преступление, приводящее к многомиллионным убыткам. Нередки случаи, когда после увольнения бывший сотрудник компании в течение долгого времени пользуется корпоративным доступом в Internet. При увольнении этого сотрудника никто не подумал о необходимости отмены его пароля на доступ к данным и ресурсам, с которыми он работал в рамках своих служебных обязанностей. Если администрирование доступа поставлено плохо, то часто никто не замечает, что бывшие сотрудники пользуются доступом в Internet и могут наносить ущерб своей бывшей компании. Спохватываются лишь тогда, когда замечают резко возросшие счета за Interne-услуги и утечку конфиденциальной информации. Такие случаи достаточно показательны, т.к. иллюстрирует очень распространенные практику и порядок увольнения в российских компаниях.

Однако самая большая опасность может исходить не просто от уволенных или обиженных рядовых сотрудников (например, операторов различных информационных подсистем), а от тех, кто облечён большими полномочиями и имеет доступ к широкому спектру самой различной информации. Обычно это сотрудники ИТ-отделов (аналитики, разработчики, системные администраторы), которые знают пароли ко всем системам, используемым в организации. Их квалификация, знания и опыт, используемые во вред, могут привести к очень большим проблемам. Кроме того, таких злоумышленников очень трудно обнаружить, поскольку они обладают достаточными знаниями о системе защиты ИС компании, чтобы обойти используемые защитные механизмы и при этом остаться "невидимыми".

Согласно ежегодному исследованию Computer Security Institute (CSI, USA) в 2012 году суммарный ущерб от всех внутренних угроз корпоративным информационным системам превысил 378 миллионов долларов (по опросу представителей 600 компаний из разных секторов экономики). По России достоверная статистика пока отсутствует. Тем не менее, при построении системы защиты необходимо защищаться не только и не столько от внешних злоумышленников, сколько от злоумышленников внутренних.

При создании защищенных корпоративных систем нередко упускается из виду распределение и текущее перераспределение прав доступа к информации, и оставляются открытыми такие очевидные причины утечки конфиденциальной информации, как "слабые" (или "долгоживущие") пароли или не внедренные, не "работающие" положения политики корпоративной безопасности. Некоторые специалисты предлагают радикальный метод - запретить любое обращение к данным, если оно не санкционировано высшим руководством. Повторим, однако, что ни административная, ни физическая защита от НСД не предотвратит хищение конфиденциальной информации сотрудниками, если они имеют к ней свободный программно-аппаратный доступ. Приведём конкретный пример. Риск неконтролируемого использования различных устройств передачи и хранения информации в своё время резко увеличился с выходом Windows XP и поддержкой в ней технологии универсальной последовательной шины доступа (Universal Serial Bus, USB). Пакет обновления Service Pack 2 для Windows XP с множеством улучшений подсистемы безопасности не содержал в себе средств разграничения доступа к портам USB и FireWire.

Вообще Windows XP (а также NT/2000/ Server 2003) обладает широкими возможностями по контролю доступа пользователей к различным ресурсам и позволяет настраивать разнообразные политики безопасности. Однако полноценный контроль доступа к USB-портам невозможен с помощью только встроенных средств администрирования. Windows разрешает любому пользователю устанавливать USB-устройства и работать с ними. Поэтому USB-порт представляет собой неконтролируемый канал утечки конфиденциальных данных и заражения корпоративной сети вирусами и "червями" в обход серверных шлюзов и антивирусов - и таких точек неконтролируемого доступа в большой распределенной компании может быть множество. Точно так же дело обстоит и с записывающими CD-ROM, FiWi-портами и многими другими устройствами.

Самый простой способ решения проблемы - отключение USB-портов через BIOS - часто является и самым неэффективным, так как современные внешние устройства (мышь, клавиатура, принтер, сканер и т.д.) всё чаще снабжены BТ-коннекторами.

Защита информации от несанкционированного доступа (НСД) к сетям и информационным ресурсам - это комплексная задача, она не может быть решена одними лишь административными или техническими мерами. Защита от НСД должна строиться как минимум на трех уровнях - административном, физическом и программно-аппаратном.

От чего надо защищаться?

Во-первых, это вирусы (Virus, Worm) и всевозможные виды практически бесполезной информации, рассылаемой абонентам электронной почты (Spam). По различным данным в 2013 году вирусным и спамовым атакам было подвержено 85-90 % компаний во всем мире. Далее следует назвать программы типа "троянский конь" (Trojan Horse), которые могут быть незаметно для владельца установлены на его компьютер и так же незаметно функционировать на нем. Следующим распространенным типом атак являются действия, направленные на выведение из строя того или иного узла сети. Эти атаки получили название "отказа в обслуживании" (Denial of Service - DoS), на сегодняшний день известно более сотни различных вариантов этих действий. Выше отмечалось, что выведение из строя узла сети на несколько часов может привести к очень серьезным последствиям. Например, выведение из строя сервера транзакционной системы крупной корпорации или банка приведет к невозможности осуществления платежей и, как следствие, к большим прямым и косвенным финансовым и рейтинговым потерям.

Укажем ещё один существенный источник угроз, который с точки зрения размера ущерба может быть отнесён к одному из самых распространённых в России - непреднамеренные ошибки пользователей ИС, операторов, системных администраторов и других лиц, обслуживающих информационные системы. Иногда такие ошибки являются угрозами (неправильно введенные данные, ошибка в программе), а иногда они создают уязвимости, которыми могут воспользоваться злоумышленники - таковы обычно ошибки администрирования и предоставления доступа.

Согласно данным В.А. Галатенко [Галатенко В.А., 2006], 65% потерь - следствие непреднамеренных ошибок из-за компьютерной неграмотности и безответственности сотрудников компаний и пользователей ИС. Очевидно, самый радикальный способ борьбы с непреднамеренными ошибками - максимальная автоматизация информационных процессов, системы программной и технической "защиты от дурака" (Fool Proof), эффективное обучение персонала, неукоснительное следование положениям политики ИБ и строгий процедурный контроль правильности совершаемых действий.

Как надо защищаться?

Наиболее простой способ — купить новейшие рекламируемые средства защиты, установить у себя в организации, не утруждая себя обоснованием её полезности и эффективности. Если компания богата, то она может позволить себе этот путь. Однако истинный руководитель должен системно оценивать ситуацию и правильно расходовать средства.

Во всем мире сейчас принято строить комплексную систему защиту информации и информационных систем в несколько этапов — на основе формирования концепции и программы информационной безопасности, имея в виду в первую очередь взаимосвязь её основных понятий (рис. 1.7) [Лапонина О. Р., 2005].

Первый этап — информационное обследование предприятия — самый важный. Именно на этом этапе определяется, от чего, в первую очередь, необходимо защищаться компании. Вначале строится так называемая модель нарушителя, которая описывает вероятный облик злоумышленника, т. е. его квалификацию, имеющиеся средства для реализации тех или иных атак, обычное время действия и т. п. На этом этапе можно получить ответ на два вопроса, которые были заданы выше: "Зачем и от кого надо защищаться?" На этом же этапе выявляются и анализируются уязвимые места и возможные пути реализации угроз безопасности, оценивается вероятность атак и ущерб от их осуществления.

По результатам этапа вырабатываются рекомендации по устранению выявленных угроз, правильному выбору и применению средств защиты. На этом этапе может быть рекомендовано не приобретать достаточно дорогие средства защиты, а воспользоваться имеющими в распоряжении. Например, в случае использования в небольшой компании мощного маршрутизатора можно рекомендовать воспользоваться встроенными в него защитными функциями, а не приобретать более дорогой межсетевой экран (Firewall).

Взаимосвязанные параметры поля информационной безопасности


Рис. 1.7.  Взаимосвязанные параметры поля информационной безопасности

Наряду с анализом существующих в компании конкретных средств защиты следует разработать общую и частные политики в области информационной безопасности и совокупности организационно-распорядительных мер и документов, а также методологий и технических решений, являющихся основой для создания инфраструктуры информационной безопасности (рис. 1.8) [Соколов А. В., Шаньгин В. Ф., 2002].

Составляющие инфраструктуры информационной безопасности


Рис. 1.8.  Составляющие инфраструктуры информационной безопасности

Эти документы, основанные на международном законодательстве и законах Российской федерации и нормативных актах, дают необходимую правовую базу службам безопасности и отделам защиты информации для проведения всего спектра защитных мероприятий, взаимодействия с внешними организациями, привлечения к ответственности нарушителей и т. п.

Следующим этапом построения комплексной системы информационной безопасности служит приобретение, установка и настройка рекомендованных на предыдущем этапе средств и механизмов защиты информации. К таким средствам можно отнести системы защиты информации от несанкционированного доступа, системы криптографической защиты, межсетевые экраны, средства анализа защищенности и другие.

Для правильного и эффективного применения установленных средств защиты необходим квалифицированный персонал.

С течением времени имеющиеся средства защиты устаревают, выходят новые версии систем обеспечения информационной безопасности, постоянно расширяется список найденных слабых мест и атак, меняется технология обработки информации, изменяются программные и аппаратные средства, приходит и уходит персонал компании. Поэтому необходимо периодически пересматривать разработанные организационно-распорядительные документы, проводить обследование ИС или ее подсистем, обучать новый персонал, обновлять средства защиты.

Следование описанным выше рекомендациям как строить комплексную систему обеспечения информационной безопасности поможет достичь необходимого и достаточного уровня защищенности вашей автоматизированной системы.

Лекция 2. Виды угроз информационной безопасности

В лекции приводятся виды угроз информационной безопасности, классификация источников угроз и защищаемой информации.

Виды угроз информационной безопасности и классификация источников угроз

Угрозы возникают из противоречий экономических интересов различных элементов, взаимодействующих как внутри, так и вне социально-экономической систем — в том числе и в информационной сфере. Они и определяют содержание и направления деятельности по обеспечению общей и информационной безопасности. Следует отметить, что анализ проблем экономической безопасности необходимо проводить, учитывая взаимосвязи экономических противоречий, угроз и потерь, к которым может приводить реализация угроз. Такой анализ приводит к следующей цепочке:

<источник угрозы (внешняя и/или внутренняя среда предприятия)>

<зона риска (сфера экономической деятельности предприятия, способы её реализации, материальные и информационные ресурсы)>

<фактор (степень уязвимости данных, информации, программного обеспечения, компьютерных и телекоммуникационных устройств, материальных и финансовых ресурсов, персонала)>

<угроза (вид, величина, направление)>

<возможность её реализации (предпосылки, объект, способ действия, скорость и временной интервал действия)>

<последствия (материальный ущерб, моральный вред, размер ущерба и вреда, возможность компенсации)>.

Угрозу отождествляют обычно либо с характером (видом, способом) дестабилизирующего воздействия на материальные объекты, программные средства или информацию, либо с последствиями (результатами) такого воздействия.

С правовой точки зрения понятие угроза жестко связано с юридической категорией ущерб, которую Гражданский Кодекс РФ (часть I, ст. 15) определяет как "фактические расходы, понесенные субъектом в результате нарушения его прав (например, кражи, разглашения или использования нарушителем конфиденциальной информации), утраты или повреждения имущества, а также расходы, которые он должен будет произвести для восстановления нарушенного права и стоимости поврежденного или утраченного имущества".

Анализ негативных последствий возникновения и осуществления угроз предполагает обязательную идентификацию возможных источников угроз, уязвимостей, способствующих их проявлению и методов реализации. В связи с этим угрозы экономической и информационной безопасности необходимо классифицировать с тем, чтобы наиболее полно и адекватно проводить указанную идентификацию: по источнику угрозы, по природе возникновения, по вероятности реализации, по отношению к виду человеческой деятельности, по объекту посягательства, по последствиям, по возможностям прогнозирования.

Угрозы можно классифицировать по нескольким критериям:

Одна из возможных моделей классификации угроз представлена на рис. 2.1 [Вихорев, С., Кобцев Р., 2002].

Модель возможных угроз системе информационной безопасности и основные классы методов защиты


Рис. 2.1.  Модель возможных угроз системе информационной безопасности и основные классы методов защиты

В ходе анализа необходимо убедиться, что большинство возможных источников угроз и уязвимости идентифицированы и сопоставлены друг с другом, а всем идентифицированным источникам угроз и уязвимостям сопоставлены методы их нейтрализации и устранения.

Указанная классификация может служить основой для выработки методики оценки актуальности той или иной угрозы, и при обнаружении наиболее актуальных угроз могут приниматься меры по выбору методов и средств для их предотвращения или нейтрализации.

При выявлении актуальных угроз экспертно-аналитическим методом определяются объекты защиты, подверженные воздействию той или иной угрозы, характерные источники этих угроз и уязвимости, способствующие реализации угроз.

На основании анализа составляется матрица взаимосвязи источников угроз и уязвимостей, из которой определяются возможные последствия реализации угроз (атаки) и вычисляется коэффициент значимости (степени опасности) этих атак как произведение коэффициентов опасности соответствующих угроз и источников угроз, определенных ранее.

Один из возможных алгоритмов проведения такого анализа, который легко формализуется и алгоритмизируется, показан на рис. 2.2.

Алгоритм проведения анализа и оценки угроз


Рис. 2.2.  Алгоритм проведения анализа и оценки угроз

Благодаря такому подходу возможно:

Выше было отмечено, что самыми частыми и самыми опасными (с точки зрения размера ущерба) являются непреднамеренные ошибки штатных пользователей, операторов, системных администраторов и других лиц, обслуживающих информационные системы. Иногда такие ошибки и являются собственно угрозами (неправильно введенные данные или ошибка в программе, вызвавшая крах системы), иногда они создают уязвимые места, которыми могут воспользоваться злоумышленники (таковы обычно ошибки администрирования). По некоторым данным, до 65% потерь возникают из-за непреднамеренных ошибок, совершенных по неосторожности, халатности или несоответствующей подготовки персонала.

Обычно пользователи могут быть источниками следующих угроз:

Очевидно, что эффективный способ борьбы с непреднамеренными ошибками — максимальная автоматизация и стандартизация, информационных процессов, использование устройств "защита от дурака" (Fool Proof Device), регламентация и строгий контроль действий пользователей. Необходимо также следить за тем, чтобы при увольнении сотрудника его права доступа (логического и физического) к информационным ресурсам аннулировались.

Основными источниками внутренних системных отказов являются:

По отношению к поддерживающей инфраструктуре рекомендуется рассматривать следующие угрозы:

Опасны, разумеется, стихийные бедствия (наводнения, землетрясения, ураганы) и события, являющиеся результатом техногенных катастроф (пожары, взрывы, обрушения зданий и т.д.). По статистике, на долю огня, воды и тому подобных "злоумышленников" (среди которых самый опасный — сбой электропитания) приходится 13-15% потерь, нанесенных производственным информационным системам и ресурсам.

Результаты проведения оценки и анализа могут быть использованы при выборе адекватных оптимальных методов парирования угроз, а также при аудите реального состояния информационной безопасности объекта.

Для создания оптимальной системы информационной безопасности предприятия необходимо грамотно оценить ситуацию, выявить возможные риски, разработать концепцию и политику безопасности, на основе которых строится модель системы и вырабатываются соответствующие механизмы реализации и функционирования.

Основные виды защищаемой информации

Любое предприятие, получающее ресурсы, в том числе и информационные, перерабатывает их в продукты своей деятельности. При этом оно порождает специфическую внутреннюю среду, которая формируется совокупностью структурных подразделений, персоналом, техническими средствами и технологическими процессами, экономическими и социальными отношениями как внутри предприятия, так и во взаимодействии с внешней средой.

Совокупность внешней и внутренней информации, обслуживающие системы и технологии, ИТ-специалисты и персонал ИТ-подразделений составляют информационно-технологический ресурс (Information & Technology Resource — ITR) современного предприятия.

Внутри предприятия информационные потоки поступают в соответствующие модули корпоративной системы для структурирования, систематизации, обработки, анализа и практического использования. Большая часть этой информации является свободно используемой в процессе реализации деятельности государственного или коммерческого предприятия, однако в зависимости от особенностей внутренней деятельности и взаимодействия с внешним миром часть информации может быть "для служебного пользования", "строго конфиденциальной" или "секретной". Такая информация является, как правило, "закрытой" и требует соответствующих мер защиты (рис. 2.3).

Для коммерческих компаний используются достаточно простые категории и виды информации (табл. 1 и табл. 2).

Общая классификация охраняемой информации


Рис. 2.3.  Общая классификация охраняемой информации

Однако в любом случае статус определенного вида информации должен быть закреплен в соответствующем нормативном документе по безопасности и известен всем участникам управленческой, организационной и производственной деятельности.

Для обеспечения безопасности при работе с охраняемой информацией следует, во-первых, выстроить политику работы с конфиденциальной и служебной информацией, разработать издать соответствующие политики, руководства и процедуры и, во-вторых, обеспечить необходимые программно-аппаратные ресурсы.

Первый шаг — это введение коммерческой тайны в соответствии с федеральным законом N 98-ФЗ "О коммерческой тайне" . Положение о коммерческой тайне разрабатывается департаментом (отделом) информационной безопасности предприятия и вводится приказом генерального директора.

Примерная процедура документирования состоит из разработки и использования следующих документов:

Таблица 1. Категории деловой информации
Раздел классификации Категория информации
Общедоступная (Public) Открытая информация, при работе с которой нет никаких ограничений
Для служебного пользования (Restricted Access) Информация ограниченного доступа
Конфиденциальная (Confidential) Конфиденциальная информация, при работе с которой вводятся строгие ограничения в зависимости от уровней допуска пользователя
Персональная (Private) Персональная информация (зарплатная ведомость, адресные и паспортные данные сотрудников, медицинские карточки, ИНН, СПС и пр.)
Таблица 2.
Вид информации Содержание Расположение Гриф
Регистрационная, уставная, юридическая, нормативная Регистрационные и уставные документы, нормативы Локально, базы данных системы поддержки деятельности руководителей и база юридической подсистемы Для служебного пользования, конфиденциальная
Плановая, научно-исследовательская и общая производственная Планы производства, описание технологий, внутренние разработки, стандарты, спецификации, интеллектуальная собственность Локально, производственные базы данных, файловые серверы Для служебного пользования, конфиденциальная
Инфраструктурная Карты и журналы ИТ-инфра-структуры, ИТ-системы, системы доступа Локально, файловый сервер Для служебного пользования, конфиденциальная
Финансовая данные и управленческий учёт Любая бухгалтерская информация, финансовые планы, отчеты, балансы, платежные документы Локально, база финансовой подсистемы либо другая среда работы финансового отдела Для служебного пользования, конфиденциальная
Кадровая Личные карточки персонала Локально, файловый сервер Для служебного пользования, конфиденциальная
Текущая рабочая Файлы и документы для внутреннего обмена данными Общедоступно, общий сервер Общедоступная, для служебного пользования
Внутрикорпоративная Приказы, распоряжния, расписания, отчеты собраний проекных групп, документы системы качества (планы, результаты проверок, корректирующие мероприятия) Общедоступно, общий сервер Общедоступная, для служебного пользования
Развлекательная Фотографии, видеоролики, фильмы, аудиокниги Общедоступно, общий либо выделенный сервер Общедоступная

В продолжение, необходимо создать набор политик по реализации внутренней информационной безопасности:

Программно-аппаратные средства для работы с охраняемой информацией либо встраиваются в соответствующие модули корпоративной информационной системы (КИС), либо используются локально в системах, оговоренных в политике ИБ. Средства противодействия угрозам ИБ и утечкам данных и информации являются, по сути, программно-аппаратным "слоем" между существующей ИТ-инфраструктурой предприятия и корпоративными приложениями, где обрабатываются конфиденциальные данные и с которыми работают сотрудники.

Защитный комплекс состоит не только из технических устройств и ПО, но и из совокупности организационных мер по реализации политики внутренней безопасности — целостное решение связывает воедино инфраструктуру, информацию и персонал.

В таком комплексе сочетаются все важные свойства, характерные для больших вычислительных и сетевых структур:

Такие целостные программные продукты осуществляют контроль и управление рисками внутренней безопасности и минимизируют утечки конфиденциально информации, за счет соответствующих технологических составляющих, глубоко интегрированных в информационную структуру предприятия. К ним относятся программно-аппаратные устройства, осуществляющие:

Грамотно организовать защиту охраняемых данных и информации непросто и недёшево. Для этого нужно произвести классификацию данных, тщательную инвентаризацию информационных ресурсов, выбрать адекватное программно-аппаратное решение, разработать и внедрить совокупность регламентирующих документы внутренней безопасности. Главную роль в этой непростой работе по минимизации рисков утечки данных играют компетентность и воля высшего руководства предприятия, актуальные политики и эффективные программные средства, а также режим коммерческой тайны при работе с охраняемой информацией.

Лекция 3. Основы законодательства в области обеспечения информационной безопасности

В лекции рассказывается о нормативной базе для защиты информации.

Правовое обеспечение информационной безопасности

При обеспечении информационной безопасности успех может быть эффективным только при применении комплексного подхода. Выше было отмечено, что для защиты интересов субъектов информационных отношений необходимо сочетать меры следующих уровней:

Законодательный уровень является важнейшим для обеспечения информационной безопасности. Будем различать на этом уровне две группы мер:

На практике обе группы мер важны в равной степени, но необходимо подчеркнуть аспект осознанного соблюдения норм и правил ИБ. Это важно для всех субъектов информационных отношений, поскольку рассчитывать только на защиту силами системных администраторов и сотрудников службы безопасности предприятия было бы неправильно. Необходимо это и тем, в чьи обязанности входит наказывать нарушителей, поскольку обеспечить доказательность при расследовании и судебном разбирательстве компьютерных преступлений без специальной подготовки невозможно.

Краткий обзор зарубежного законодательства в области информационной безопасности

Одним из важнейших законов в этом направлении является американский "Закон об информационной безопасности" (Computer Security Act of 1987, Public Law 100-235, January 8, 1988). Цель закона — реализация минимальных, но достаточных действий по обеспечению безопасности информации в федеральных компьютерных системах, без ограничений спектра возможных действий.

В начале Закона называется конкретный исполнитель —Национальный институт стандартов и технологий, НИСТ (National Institute of Standardization — NIST), отвечающий за выпуск стандартов и руководств, направленных на защиту от уничтожения и несанкционированного доступа к информации, а также от краж и подлогов, выполняемых с помощью компьютеров. Документы, выпускаемые институтом, являются руководствами "симметричного действия", служащие как для регламентации действий специалистов, так и для повышения информированности общества.

Согласно Закону, все операторы федеральных информационных систем и баз данных, содержащих конфиденциальную информацию, должны сформировать планы обеспечения ИБ. Обязательным является и периодическое обучение всего персонала таких ИС. Институт, в свою очередь, обязан проводить исследования природы и масштаба уязвимых мест, вырабатывать экономически оправданные меры защиты. Результаты исследований применяются как в государственных системах, так и в частном секторе.

Закон обязывает НИСТ координировать свою деятельность с другими министерствами и ведомствами, включая Министерство обороны, Министерство энергетики, Агентство национальной безопасности (АНБ) и т.д., чтобы избежать дублирования и несовместимости. Помимо регламентации дополнительных функций НИСТ, Закон предписывает создать при Министерстве торговли США комиссию по информационной безопасности, которая должна:

С практической точки зрения важен раздел № 6 Закона, обязывающий все правительственные ведомства сформировать план обеспечения информационной безопасности, направленный на то, чтобы компенсировать риски и предотвратить возможный ущерб от утери, неправильного использования, несанкционированного доступа или модификации информации в федеральных системах. Копии планов направляются в НИСТ и в Агентство национальной безопасности (АНБ, National Safety Agency — NSA).

В 1997 году появился законопроект "О совершенствовании информационной безопасности" (Computer Security Enhancement Act of 1997, H.R. 1903), направленный на усиление роли НИСТ и упрощение операций с криптографическими средствами.

В законопроекте констатируется, что частные компании-разработчики готовы предоставить криптографические средства для обеспечения конфиденциальности, целостности и аутентичности данных и что разработка и использование шифровальных технологий должны происходить на основании требований рынка, а не распоряжений правительства. Кроме того, здесь отмечается, что за пределами США имеются сопоставимые и общедоступные криптографические технологии, и это следует учитывать при выработке экспортных ограничений, чтобы не снижать конкурентоспособность американских производителей аппаратного и программного обеспечения.

Очень важен раздел 3, в котором закрепляется обязанность НИСТ готовить стандарты, руководства, средства и методы для инфраструктуры открытых ключей (ниже аналогичный закон РФ об ЭЦП) по запросам частного сектора. Эти нормативные документы позволяют сформировать негосударственную инфраструктуру, пригодную для взаимодействия с федеральными ИС. В разделе № 4 особое внимание обращается на необходимость анализа средств и методов оценки уязвимых мест других продуктов частного сектора в области ИБ. Законом поощряется разработка требований и правил безопасности, нейтральных по отношению к конкретным техническим решениям, использование в федеральных ИС коммерческих продуктов, участие в реализации шифровальных технологий, позволяющее в конечном итоге сформировать инфраструктуру, которую можно рассматривать как резервную для федеральных ИС.

Важно, что в соответствии с разделами № 10 и далее предусматривается выделение финансирование, называются точные сроки реализации программ партнёрства и проведения исследований инфраструктуры с открытыми ключами, национальной инфраструктуры цифровых подписей. В частности, предусматривается, что для удостоверяющих центров должны быть разработаны типовые правила и процедуры, порядок лицензирования, стандарты аудита. В 2001 году был одобрен Палатой представителей и передан в Сенат новый вариант рассмотренного законопроекта — Computer Security Enhancement Act of 2001 (H.R. 1259 RFS).

За четыре года (1997-2001 годы) на законодательном и других уровнях информационной безопасности США было сделано следующие важные разработки:

Программа безопасности, предусматривающая экономически оправданные защитные меры, синхронизированные с жизненным циклом информационных технологий и систем, неоднократно входит в законодательные акты США. Например, согласно пункту 3534 ("Обязанности федеральных ведомств") подглавы II ("Информационная безопасность") главы 35 ("Координация федеральной информационной политики") рубрики 44 ("Общественные издания и документы"), такая "Программа" должна включать:

В законодательстве Германии можно выделить "Закон о защите данных" (Federal Data Protection Act of December 20, 1990 (BGBl.I 1990 S.2954), amended by law of September 14, 1994 (BGBl. I S. 2325)), который целиком посвящен защите персональных данных.

Законом устанавливается приоритет интересов национальной безопасности над сохранением тайны частной жизни. В остальном, права личности защищены весьма тщательно. Например, если сотрудник фирмы обрабатывает персональные данные в интересах частных компаний, он дает подписку о неразглашении, которая действует и после перехода на другую работу. Государственные учреждения, хранящие и обрабатывающие персональные данные, несут ответственность за нарушение тайны частной жизни "субъекта данных", как говорится в Законе. В материальном выражении ответственность ограничена верхним пределом в 250 тысяч немецких марок.

Из законодательства Великобритании можно выделить семейство так называемых "добровольных стандартов" BS 7799, помогающих организациям на практике сформировать программы безопасности. Ниже положения этого системообразующего стандарта будут рассмотрены подробнее.

Российское законодательство в области информационной безопасности

Основным законом Российской Федерации является Конституция, принятая 12 декабря 1993 года. В соответствии со статьей 24 Конституции, органы государственной власти и органы местного самоуправления, их должностные лица обязаны обеспечить каждому возможность ознакомления с документами и материалами, непосредственно затрагивающими его права и свободы, если иное не предусмотрено законом.

Статья 23 Конституции гарантирует право на личную и семейную тайну, на тайну переписки, телефонных переговоров, почтовых, телеграфных и иных сообщений, статья 29 — право свободно искать, получать, передавать, производить и распространять информацию любым законным способом. Современная интерпретация этих положений включает обеспечение конфиденциальности данных, в том числе в процессе их передачи по компьютерным сетям, а также доступ к средствам защиты информации.

Статья 41 гарантирует право на знание фактов и обстоятельств, создающих угрозу для жизни и здоровья людей, статья 42 — право на знание достоверной информации о состоянии окружающей среды.

Отметим, что право на информацию может реализовываться средствами бумажных технологий, но в современных условиях наиболее практичным и удобным для граждан является создание соответствующими законодательными, исполнительными и судебными органами информационных серверов и поддержание доступности, актуальности и целостности, представленных на них сведений, то есть обеспечение их (серверов) информационной безопасности.

В сентябре 2000 года Президент Российской Федерации В.В.Путин утвердил "Доктрину информационной безопасности". Какую роль она сыграет в развитии отечественных информационных технологий и средств защиты информации?

Информационные технологии — бурно и динамично развивающаяся отрасль мирового хозяйства. Объем рынка информационной продукции составляет более 2-х триллионов долларов США, что сопоставимо с бизнесом в сферах топлива и энергетики, автомобилестроения. Серьезную опасность для России представляют стремление ряда стран к доминированию в мировом информационном пространстве, вытеснению России с внутреннего и внешнего рынка информационных услуг, разработка рядом государств концепций "информационных войн". Такие концепции предусматривают создание средств воздействия на информационные сферы других стран мира, нарушение нормального функционирования информационных и телекоммуникационных систем, а также сохранности информационных ресурсов, получение несанкционированного доступа к ним.

"Доктрина информационной безопасности" закладывает основы информационной политики государства. С учетом существующих угроз для защиты национальных интересов России государство планирует активно развивать отечественную индустрию средств информации, коммуникации и связи с последующим выходом продукции на мировой рынок, обеспечивать гарантии безопасности для национальных информационных и телекоммуникационных систем и защиту государственных секретов с помощью соответствующих технических средств. Одновременно предусматривается повышать эффективность информационного обеспечения деятельности государства.

Принятие этого документа ставит в повестку дня и вопрос о необходимости совершенствования российского законодательства. К примеру, речь идет о принятии законов, касающихся пресечения компьютерной преступности.

Перечислим некоторые основополагающие законы и нормативные акты Российской Федерации в области информационной безопасности в их первой редакции:

1. Закон РФ "О государственной тайне" от 21.7.93 г. № 5485-1.

2. Закон РФ "О коммерческой тайне" (версия 28.12.94 г.).

3. Закон РФ "Об информации, информатизации и защите информации" от 25.1.95 г.

4. Закон РФ "О персональных данных" (версия 20.02.95 г.).

5. Закон РФ Российской Федерации "О федеральных органах правительственной связи и информации" от 19.2.93 г. № 4524-1.

6. Положение о государственной системе защиты информации в Российской Федерации от ИТР и от утечки по техническим каналам. (Постановление Правительства РФ от 15.9.93 г. № 912-51).

7. Положение о Государственной технической комиссии при Президенте Российской Федерации (Гостехкомиссии России). Распоряжение Президента Российской Федерации от 28.12.92 г. № 829-рпс.

В настоящее время практически все эти законы и положения уточнены и дополнены соответствующими главами, параграфами и поправками, отражающими реалия текущей ситуации.

В Гражданском кодексе Российской Федерации (редакция от 15 мая 2001 года) фигурируют такие понятия, как банковская, коммерческая и служебная тайна. Согласно статье 139, "информация составляет служебную или коммерческую тайну в случае, когда информация имеет действительную или потенциальную коммерческую ценность в силу неизвестности ее третьим лицам, к ней нет свободного доступа на законном основании, и обладатель информации принимает меры к охране ее конфиденциальности". Это подразумевает, как минимум, компетентность в вопросах ИБ и наличие доступных (и законных) средств обеспечения конфиденциальности.

В Уголовном кодекс Российской Федерации (редакция от 14 марта 2002 года) глава 28 "Преступления в сфере компьютерной информации" содержит три соответствующие статьи:

Первая из указанных статей подразумевает посягательства на конфиденциальность, вторая определяет действия с вредоносным ПО, третья — с нарушениями доступности и целостности, повлекшими за собой уничтожение, блокирование или модификацию охраняемой законом информации. В свете бурного развития локальных, региональных, национальных и всемирной сетей включение в сферу действия УК РФ вопросов доступности информационных сервисов является очень своевременным.

Статья 138 УК РФ, защищая конфиденциальность персональных данных, предусматривает наказание за нарушение тайны переписки, телефонных переговоров, почтовых, телеграфных или иных сообщений. Аналогичную роль для банковской и коммерческой тайны играет статья 183 УК РФ.

Интересы государства в плане обеспечения конфиденциальности информации нашли наиболее полное выражение в Законе "О государственной тайне" (с изменениями и дополнениями от 6 октября 1997 года). В нем государственная тайна определена как защищаемые государством сведения в области его военной, внешнеполитической, экономической, разведывательной, контрразведывательной и оперативно-розыскной деятельности, распространение которых может нанести ущерб безопасности Российской Федерации. Там же дается определение средств защиты информации. Согласно данному Закону, это технические, криптографические, программные и другие средства, предназначенные для защиты сведений, составляющих государственную тайну; средства, в которых они реализованы, а также средства контроля эффективности защиты информации.

Закон "Об информации, информатизации и защите информации"

Основополагающим среди российских законов, посвященных вопросам информационной безопасности, следует считать закон "Об информации, информатизации и защите информации" от 20 февраля 1995 года (принят Государственной Думой РФ 25 января 1995 года; актуальная версия закона под номером 149-ФЗ от 27 июля 2006 г.). В нём даются основные определения и намечаются направления развития законодательства в данной области.

Приведём примеры некоторых определений:

Закон выделяет следующие цели защиты информации:

Согласно закону "Защите подлежит любая документированная информация, неправомерное обращение с которой может нанести ущерб ее собственнику, владельцу, пользователю и иному лицу". Далее, "Режим защиты информации устанавливается:

Обратим внимание, что защиту государственной тайны и персональных данных берет на себя государство; за другую конфиденциальную информацию отвечают ее собственники.

В качестве основного инструмента защиты информации закон предлагает мощные универсальные средства — лицензирование и сертификацию (статья 19):

  1. Информационные системы, базы и банки данных, предназначенные для информационного обслуживания граждан и организаций, подлежат сертификации в порядке, установленном Законом Российской Федерации "О сертификации продукции и услуг".
  2. Информационные системы органов государственной власти Российской Федерации и органов государственной власти субъектов Российской Федерации, других государственных органов, организаций, которые обрабатывают документированную информацию с ограниченным доступом, а также средства защиты этих систем подлежат обязательной сертификации. Порядок сертификации определяется законодательством Российской Федерации.
  3. Организации, выполняющие работы в области проектирования, производства средств защиты информации и обработки персональных данных, получают лицензии на этот вид деятельности. Порядок лицензирования определяется законодательством Российской Федерации.
  4. Интересы потребителя информации при использовании импортной продукции в информационных системах защищаются таможенными органами Российской Федерации на основе международной системы сертификации.

Еще несколько пунктов закона (статья 22, пункты 2-5):

  1. Владелец документов, массива документов, информационных систем обеспечивает уровень защиты информации в соответствии с законодательством Российской Федерации.
  2. Риск, связанный с использованием не сертифицированных информационных систем и средств их обеспечения, лежит на собственнике (владельце) этих систем и средств. Риск, связанный с использованием информации, полученной из не сертифицированной системы, лежит на потребителе информации.
  3. Собственник документов, массива документов, информационных систем может обращаться в организации, осуществляющие сертификацию средств защиты информационных систем и информационных ресурсов, для проведения анализа достаточности мер защиты ресурсов собственника и систем и получения консультаций.
  4. Владелец документов, массива документов, информационных систем обязан оповещать собственника информационных ресурсов и (или) информационных систем обо всех фактах нарушения режима защиты информации.

Статья 23 "Защита прав субъектов в сфере информационных процессов и информатизации" (пункты 2-4):

  1. Защита прав субъектов в указанной сфере осуществляется судом, арбитражным судом, третейским судом с учетом специфики правонарушений и нанесенного ущерба. Очень важными являются пункты статьи 5, касающиеся юридической силы электронного документа и электронной цифровой подписи.
  2. Юридическая сила документа, хранимого, обрабатываемого и передаваемого с помощью автоматизированных информационных и телекоммуникационных систем, может подтверждаться электронной цифровой подписью. Юридическая сила электронной цифровой подписи признается при наличии в автоматизированной информационной системе программно-технических средств, обеспечивающих идентификацию подписи, и соблюдении установленного режима их использования.
  3. Право удостоверять идентичность электронной цифровой подписи осуществляется на основании лицензии. Порядок выдачи лицензий определяется законодательством Российской Федерации.

Таковы важнейшие, на наш взгляд, положения Закона "Об информации, информатизации и защите информации", касающиеся охраняемой информации и информационной безопасности.

Другие законы и нормативные акты

Следующим законом, имеющим важное значение в сфере информационной безопасности, является Закон РФ "О лицензировании отдельных видов деятельности" от 8 августа 2001 года, № 128-ФЗ (Принят Государственной Думой 13 июля 2001 года).

Статья 17 Закона устанавливает перечень видов деятельности, на осуществление которых требуются лицензии:

Основными лицензирующими органами в области защиты информации являются Федеральное агентство правительственной связи и информации (ФАПСИ) и Государственная техническая комиссия при Президенте РФ (Гостехкомиссия РФ). ФАПСИ ведает всем, что связано с криптографией, Гостехкомиссия лицензирует деятельность по защите конфиденциальной информации. Эти же организации возглавляют работы по сертификации средств соответствующей направленности. Кроме того, ввоз и вывоз средств криптографической защиты информации (шифровальной техники) и нормативно-технической документации к ней может осуществляться исключительно на основании лицензии Министерства внешних экономических связей Российской Федерации, выдаваемой на основании решения ФАПСИ. Все эти вопросы регламентированы соответствующими указами Президента и постановлениями Правительства РФ, которые мы здесь перечислять не будем.

В эпоху глобальных коммуникаций важную роль играет Закон РФ "Об участии в международном информационном обмене" от 4 июля 1996 года, № 85-ФЗ (принят Государственной Думой 5 июня 1996 года). В нем, как и в Законе "Об информации...", основным защитным средством являются лицензии и сертификаты.

Согласно пункту 2 статьи 9: "Защита конфиденциальной информации государством распространяется только на ту деятельность по международному информационному обмену, которую осуществляют физические и юридические лица, обладающие лицензией на работу с конфиденциальной информацией и использующие сертифицированные средства международного информационного обмена. Выдача сертификатов и лицензий возлагается на Комитет при Президенте Российской Федерации по политике информатизации, Государственную техническую комиссию при Президенте Российской Федерации, Федеральное агентство правительственной связи и информации при Президенте Российской Федерации. Порядок выдачи сертификатов и лицензий устанавливается Правительством Российской Федерации".

Еще одна цитата из того же Закона — статья 17 "Сертификация информационных продуктов, информационных услуг, средств международного информационного обмена":

  1. "При ввозе информационных продуктов, информационных услуг в Российскую Федерацию импортер представляет сертификат, гарантирующий соответствие данных продуктов и услуг требованиям договора. В случае невозможности сертификации ввозимых на территорию Российской Федерации информационных продуктов, информационных услуг ответственность за использование данных продуктов и услуг лежит на импортере.
  2. Средства международного информационного обмена, которые обрабатывают документированную информацию с ограниченным доступом, а также средства защиты этих средств подлежат обязательной сертификации.
  3. Сертификация сетей связи производится в порядке, определяемом Федеральным законом "О связи".

10 января 2002 года Президентом РФ был подписан чрезвычайно важный закон "Об электронной цифровой подписи", № 1-ФЗ (принят Государственной Думой 13 декабря 2001 года), развивающий и конкретизирующий приведенные выше положения закона "Об информации...". Его роль поясняется в статье 1.

  1. Целью настоящего Федерального закона является обеспечение правовых условий использования электронной цифровой подписи в электронных документах, при соблюдении которых электронная цифровая подпись в электронном документе признается равнозначной собственноручной подписи в документе на бумажном носителе.
  2. Действие настоящего Федерального закона распространяется на отношения, возникающие при совершении гражданско-правовых сделок и в других предусмотренных законодательством Российской Федерации случаях. Действие настоящего Федерального закона не распространяется на отношения, возникающие при использовании иных аналогов собственноручной подписи.

Закон вводит следующие основные понятия:

Согласно Закону, электронная цифровая подпись в электронном документе равнозначна собственноручной подписи в документе на бумажном носителе при одновременном соблюдении следующих условий:

В заключение раздела отметим, что в области информационной безопасности законы реально работают через нормативные документы, подготовленные соответствующими ведомствами. В этой связи очень важны руководящие документы Гостехкомиссии РФ, определяющие требования к классам защищенности средств вычислительной техники и автоматизированных систем. Особенно выделим утвержденный в июле 1997 года "Руководящий документ по межсетевым экранам", вводящий в официальную сферу использования один из самых современных классов защитных средств.

В современном мире глобальных сетей нормативно-правовая база должна быть согласована с международной практикой. Особое внимание следует обратить на то, что желательно привести российские стандарты и сертификационные нормативы в соответствие с международным уровнем информационных технологий вообще и информационной безопасности в частности. Есть целый ряд оснований для того, чтобы это сделать. Одно из них — необходимость защищенного взаимодействия с зарубежными организациями и зарубежными филиалами российских компаний, второе (более существенное) — доминирование на современном этапе развития аппаратно-программных продуктов зарубежного производства.

На законодательном уровне должен быть решен вопрос об отношении к таким изделиям. Здесь необходимо выделить два аспекта: независимость в области информационных технологий и информационную безопасность. Использование зарубежных продуктов в некоторых критически важных системах (в первую очередь, оборонных), в принципе, может представлять угрозу национальной безопасности (в том числе информационной), поскольку нельзя исключить вероятности встраивания "закладных" элементов. В то же время, в подавляющем большинстве случаев потенциальные угрозы информационной безопасности носят исключительно внутренний характер. В таких условиях незаконность использования зарубежных разработок (ввиду сложностей с их сертификацией) при отсутствии отечественных аналогов затрудняет (или вообще делает невозможной) защиту информации без серьезных на то оснований.

Проблема сертификации аппаратно-программных продуктов зарубежного производства действительно сложна, однако, как показывает опыт европейских стран, решить ее можно. Сложившаяся в Европе система сертификации по требованиям информационной безопасности позволила оценить операционные системы, системы управления базами данных и другие разработки американских компаний. Вхождение России в эту систему и участие российских специалистов в сертификационных испытаниях в состоянии снять имеющееся противоречие между независимостью в области информационных технологий и информационной безопасностью без какого-либо ущерба для национальной безопасности.

Лекция 4. Построения системы информационной безопасности

Вопросы ответственности в информационной сфере как инструменты реализации бизнес-целей предприятия.

Основные аспекты построения системы информационной безопасности

Вопросы ответственности в информационной сфере являются чрезвычайно важными в реализации бизнес-целей предприятия. Поскольку эти вопросы в такой постановке являются частью стратегии развития компании, то они, вне всякого сомнения, относятся к компетенции высшего руководства. Рассматривая вопросы ответственности, следует разделить их реализацию в двух ключевых областях — во внешней среде предприятия и в среде внутренней. Точно также можно ввести два вида вопросов — ответственность за нарушения ИБ и ответственность за реализацию ИБ в различных областях информационной деятельности предприятия.

Регулирование ответственности нарушений информационной безопасности во внешней среде с целью нанести вред владельцу информации, а также вопросы взаимоотношений между различными субъектами — обладателями информации — регулируется федеральными законами РФ, региональными, муниципальными и пр. нормативными актами (ответственность первого вида).

Ответственность за причинение вреда и ответственность за реализацию мероприятий по разработке, внедрению и использованию систем ИБ во внутренней среде устанавливается, как правило, на базе действующего законодательства РФ и страны, с которыми осуществляется бизнес, и внутренних корпоративных ("локальных правоустанавливающих") документов. Первый вид ответственности рассмотрен выше.

Ответственность второго вида (формирование и реализация ИБ в различных областях информационной деятельности предприятия) устанавливается обычно на уровне высшего руководства предприятия и включает в себя следующий круг вопросов.

Программа информационной безопасности

Управленческие аспекты разработки и реализации информационной безопасности предполагают наличие совокупности организационных мер в виде развернутой программы, которую целесообразно структурировать по уровням, обычно в соответствии со структурой организации. В большинстве случаев достаточно двух уровней — верхнего (организационно-управленческого), который охватывает всю организацию и корпоративную ИС, и нижнего (или сервисного), который относится к отдельным подсистемам ИС и сервисам.

Программу верхнего уровня формирует и возглавляет лицо, отвечающее за информационную безопасность организации. Эти обязанности, как правило, входят в обязанности руководителя ИТ-подразделения (Chief Information Officer — CIO). Программа должна содержать следующие главные цели:

В рамках программы верхнего уровня принимаются стратегические решения по безопасности, оцениваются технологические новинки. Информационные технологии развиваются очень быстро, и необходимо иметь четкую политику отслеживания и внедрения новых программных и технических средств защиты.

Контроль деятельности в области безопасности имеет двоякую направленность. Во-первых, необходимо гарантировать, что действия организации не противоречат федеральным и региональным законам и нормативным актам. Необходимо постоянно следить за изменениями во внешней среде, приводящие к возможности возникновения угроз. Во-вторых, нужно постоянно отслеживать состояние безопасности внутри организации, реагировать на все случаи нарушений, вырабатывать стратегию развития защитных мер с учетом изменения обстановки во внешней и внутренней средах.

Цель программы нижнего уровня — обеспечить надежную и экономичную защиту информационных подсистем, конкретных сервисов или групп однородных сервисов. На этом уровне решается, какие механизмы защиты использовать, закупаются и устанавливаются технические средства, выполняется повседневное администрирование, отслеживается состояние слабых мест, проводится первичное обучение персонала и т.п. Обычно за программу нижнего уровня отвечают ответственные менеджеры по обеспечению ИБ, системные администраторы и администраторы сервисов. В плане безопасности важнейшим действием на этом этапе является оценка критичности как самого сервиса, так и информации, которая с его помощью будет обрабатываться. Необходимо сформулировать ответы на следующие вопросы:

Результаты оценки критичности являются отправной точкой в составлении спецификаций на приобретение или разработку сервисов. Кроме того, они определяют ту меру внимания, которую служба безопасности организации должна уделять сервису или группе сервисов на всех этапах его жизненного цикла.

Сделаем существенную оговорку. Программа безопасности не является воплощением простого набора технических средств, встроенных в информационную систему — у системы ИБ есть важнейшие "политический" и управленческий аспекты. Программа должна официально приниматься и поддерживаться высшим руководством, у нее должны быть определенные штаты и выделенный бюджет. Без подобной поддержки приказы, распоряжения и "призывы" к исполнению программы останутся пустым звуком.

Модели ИБ, требования и основные этапы реализации информационной безопасности

Главная цель мер, предпринимаемых на управленческом уровне - сформировать единую концепцию и программу работ в области информационной безопасности (ИБ) и обеспечить ее выполнение, выделяя необходимые ресурсы и контролируя текущее состояние системы ИБ.

Практически это можно осуществить, разработав концептуальную, математическую и функциональную модели представления информационной защиты, которая позволяет решать задачи создания, использования, сопровождения, развития и оценки эффективности общей системы ИБ (рис. 4.1).

Математическая модель представляет собой формализованное описание сценариев в виде логико-алгоритмической последовательности действий нарушителей и ответных мер. Расчетные количественные значения параметров модели характеризуют функциональные (аналитические, алгоритмические или численные) зависимости, описывающие процессы взаимодействия нарушителей с системой защиты и возможные результаты действий. Именно такой вид модели чаще всего используется для количественных оценок уязвимости объекта, построения алгоритма защиты оценки рисков и эффективности принятых мер (рис. 4.2).

Содержание модели информационной безопасности


Рис. 4.1.  Содержание модели информационной безопасности

При построении теоретических моделей систем защиты информации (СЗИ) и информационных ресурсов необходимо опираться на следующие важнейшие обстоятельства:

Такие модели для разных компаний могут быть разнообразными, но любая из них должна обладать следующими свойствами: универсальность, комплексность, наглядность, простота использования, практическая реализуемость, измеримость с помощью наборов метрик, "самообучаемость" (возможность наращивания знаний), надежное функционирование в условиях высокой неопределенности исходной информации.

Место математической модели в реализации концепции  и программы ИБ


Рис. 4.2.  Место математической модели в реализации концепции и программы ИБ

Ниже указаны основные этапы построения модели:

Для контроля параметров реализуемых моделей СЗИ необходимо формировать системы количественных показателей (метрик), с помощью которых оценивается:

В настоящее время адаптивные модели с использованием нейро-нечетких классификаторов чаще всего строятся в терминах теории нечетких множеств (Fuzzy Sets) и нечеткой логики (Fuzzy Logic) по следующей схеме (рис. 4.3).

Схема построения модели СЗИ


Рис. 4.3.  Схема построения модели СЗИ

Адаптивность модели на базе нейронных сетей (НС) позволяет при ограниченных затратах на организацию системы ИБ обеспечить заданный уровень безопасности ИТ-системы за счет быстрой реакции системы на изменение поля угроз. При этом очень важным качеством является возможность накопления и передачи опыта системой ЗИ.

Распределенные поля нейро-четких и нейро-нечетких сетей аккумулируют знания в процессе развития защищаемой ИТ-системы, производят адаптацию к изменению поля угроз и эти знания могут передаваться в последующие версии ИТ-системы. Так формируется процесс наследования.

Схема нейро-нечеткого классификатора


Рис. 4.4.  Схема нейро-нечеткого классификатора

На рис. 4.4 показана одна из возможных схем такого классификатора. Обозначения здесь следующие: - вектор угроз, - вектор заключений о защищенности системы, - совокупность формальных нейронов классификатора для выполнения операций композиции над нечеткими заключениями, и - нижняя и верхняя границы уровня угроз, - совокупность весовых коэффициентов, описывающих веса связей между различными взаимодействующими нейронами классификатора.

Обучение нейро-нечеткого классификатора на наборе векторов известных угроз (обучающая выборка) выявляет и позволяет устранить из структуры нейронной сети незначащие связи (слабые неточные заключения в системы нечетких правил, имеющие минимальные веса). Обучение такой НС в виде многослойной структуры с нечеткими связями не требует выполнения сложных математических расчетов, что позволяет снизить трудоемкость решения задачи обучения адаптивной СЗИ (рис. 4.5).

Адаптивная модель СЗИ на базе нейронных сетей


Рис. 4.5.  Адаптивная модель СЗИ на базе нейронных сетей

Схема работы генетического алгоритма


Рис. 4.6.  Схема работы генетического алгоритма

Минимизацию ошибки в такой адаптивной системе, построенной на базе нейронных сетей, можно эффективно осуществлять с использованием генетических алгоритмов, где в качестве генов хромосомы используются векторы итерационно перевычисляемых весов связей, ассоциированных с входными значениями (рис. 4.6).

Основное назначение функциональной модели СЗИ - практическое обеспечение процесса создания системы ИБ за счет оптимизации принимаемых решений и выбора рационального варианта технической реализации (рис. 4.7).

Формирование требований к системе информационной безопасности


Рис. 4.7.  Формирование требований к системе информационной безопасности

На рис. 4.8 в общем виде представлена модель требований, на основании которых формируются спецификации и организационные меры для приобретения готовых решений или разработки программно-аппаратных средств, реализующих систему информационной защиты [Симонов С., 1999].

Вне зависимости от размеров организации и специфики ее информационной системы, работы по обеспечению режима ИБ в том или ином виде должны содержать этапы, представленные на рис. 4.8. При этом важно не упустить каких-либо существенных аспектов. Это будет гарантировать некоторый минимальный (базовый) уровень ИБ, обязательный для любой информационной технологии или информационной системы.

Основные этапы обеспечения информационной безопасности


Рис. 4.8.  Основные этапы обеспечения информационной безопасности

Для обеспечения базового уровня ИБ используется упрощенный подход к анализу рисков, при котором рассматривается стандартный набор наиболее распространенных угроз безопасности без детальной оценки их вероятностей. Для нейтрализации угроз применяется типовой набор контрмер, а вопросы эффективности защиты рассматриваются в отдельных важных случаях.

Подобный подход приемлем, если ценность защищаемых ресурсов с точки зрения организации не является чрезмерно высокой.

Отметим объективные трудности, с которыми можно столкнуться при моделировании системы информационной зациты:

  1. Трудность построения формальных моделей СЗИ определяется, в целом, неопределенностью условий функционирования ИС.
  2. Постановка задачи обеспечения защиты информации, часто оказывается некорректной, поскольку формулируется в условиях непредсказуемости поведения системы защиты в нестандартных и, особенно, экстремальных ситуациях.
  3. В связи с этим, задачи обеспечения безопасности вычислительных и информационных систем, как правило, не обладают свойством единственности решения.
  4. Эффективность и оптимальность определяются степенью учета ограничений, налагаемых СЗИ для конкретных ситуаций – в общем случае трудно сформировать модель, пригодную для всех возможных ситуаций, связанных с угрозами.
  5. Быстрое развитие информационных технологий заставляет пересматривать концепции и программы информационной защиты, что однозначно приводит к необходимости пересматривать текущие модели СЗИ.

Однако математическе и функциональное моделирование чрезвычайно важно и необходимо. В результате моделирования получаем: оценку возможности реализации различных средств защиты информации в современных системах обработки данных; архитектуру системы защиты, согласованную с архитектурой ИС и информационной инфраструктурой предприятия; количественную оценку качества функционирования СЗИ; оценку экономической и практической эффективности реализуемой модели СЗИ.

Мероприятия по защите информации

Мероприятия охватывают целый ряд аспектов законодательного, организационного и программно-технического характера. Для каждого из них формулируется ряд задач, выполнение которых необходимо для защиты информации. Перечислим самые общие из них.

В нормативно-законодательном аспекте необходимо решение следующих задач:

В организационном аспекте:

В процедурном аспекте:

В программно-техническом аспекте:

Рассматривая эти аспекты применительно к обеспечению безопасности современных информационных систем, можно сфокусировать их на следующих положениях [Галатенко В.А., 2006]:

При формулировании требований к обеспечению информационной безопасности и построению соответствующей функциональной модели ИБ, следует учитывать следующие важные моменты.

Во-первых, для каждого сервиса основные требования к ИБ (доступность, целостность, конфиденциальность) трактуются по-своему. Целостность с точки зрения СУБД и с точки зрения почтового сервера — вещи принципиально разные. Бессмысленно говорить о безопасности локальной или иной сети вообще, если сеть включает в себя разнородные компоненты. Следует анализировать защищенность конкретных сервисов и устройств, функционирующих в сети. Для разных сервисов и защиту строят по-разному.

И, во-вторых, основная угроза ИБ организаций, как было отмечено выше, в большей степени исходит не от внешних злоумышленников, а от собственных сотрудников. В связи с этим необходима разработка и внедрения в практику работы предприятия совокупности управленческих и организационных мер по обеспечению ИБ.

Политика информационной безопасности

Основой программы обеспечения ИБ является многоуровневая политика информационной безопасности, отражающая подход организации к защите своих информационных активов и ресурсов (рис. 4.9).

Системное содержание политики   информационной безопасности


Рис. 4.9.  Системное содержание политики информационной безопасности

Под "политикой информационной безопасности" понимается совокупность документированных методологий и управленческих решений, а также распределение ролей и ответственности, направленных на защиту информации, информационных систем и ассоциированных с ними ресурсов.

Политика безопасности является важнейшим звеном в формировании ИБ, поэтому принятие решения о её разработке, внедрении и неукоснительном выполнении всегда принимается высшим руководством организации. Политика разрабатывается на основе концепции и программы информационной безопасности. Как системный документ, политика включает в себя общую (концептуально-программную) часть и совокупность частных политик, относящихся к различным аспектам деятельности компании.

В идеале политика информационной безопасности должна быть реалистичной и выполнимой, а также не приводить к существенному снижению общей производительности бизнес-подразделений компании. Политика безопасности должна содержать основные цели и задачи организации режима информационной безопасности, четко содержать описание области действия, а также указывать на контактные лица и их обязанности.

Вводная часть "Общей политики безопасности" должна быть краткой и понятной содержать не более двух-четырёх (максимум пять) страниц текста. При этом важно учитывать, как политика безопасности будет влиять на уже существующие информационные системы компании. Как только политика утверждена, она должны быть предоставлены всем сотрудникам компании для ознакомления. Наконец, политика безопасности должна пересматриваться ежегодно, чтобы отразить текущие изменения в развитии бизнеса компании и в её программно-аппаратном, сетевом и информационном обеспечении.

Формирование, актуализация и совершенствование политики ИБ является многоаспектным циклическим (итерационным) процессом (рис. 4.10), реализация которого сводится к следующим практическим шагам.

Итерационный процесс разработки и реализации политики ИБ


Рис. 4.10.  Итерационный процесс разработки и реализации политики ИБ

  1. Определение используемых руководящих документов и стандартов в области ИБ, а также основных положений политики ИБ, включая:
    • принципы администрирования системы ИБ и управление доступом к вычислительным и телекоммуникационным средствам, программам и информационным ресурсам, а также доступом в помещения, где они располагаются;
    • принципы контроля состояния систем защиты информации, способы информирования об инцидентах в области ИБ и выработку корректирующих мер, направленных на устранение угроз;
    • принципы использования информационных ресурсов персоналом компании и внешними пользователями;
    • антивирусную защиту и защиту против действий хакеров;
    • вопросы резервного копирования данных и информации;
    • проведение профилактически, ремонтных и восстановительных работ;
    • обучение и повышение квалификации персонала.
  2. Разработка методологии выявления и оценки угроз и рисков их осуществления, определение подходов к управлению рисками: является ли достаточным базовый уровень защищенности или требуется проводить полный вариант анализа рисков.
  3. Структуризация контрмер по уровням требований к безопасности.
  4. Порядок сертификации на соответствие стандартам в области ИБ. Должна быть определена периодичность проведения совещаний по тематике ИБ на уровне руководства, включая периодический пересмотр положений политики ИБ, а также порядок обучения всех категорий пользователей информационной системы по вопросам ИБ.

С практической точки зрения политику безопасности целесообразно разделить на три уровня. К верхнему уровню можно отнести решения, затрагивающие организацию в целом. Они носят общий характер и, как правило, исходят от высшего руководства организации:

На верхнем уровне политики цели организации в области информационной безопасности формулируются в терминах целостности, доступности и конфиденциальности. Если организация отвечает за поддержание критически важных баз данных, на первом плане может стоять уменьшение случаев потерь, повреждений или искажений данных. Для организации, занимающейся продажами, вероятно, важна актуальность информации о предоставляемых услугах и ценах, а также ее доступность максимальному числу потенциальных покупателей. "Режимная" организация в первую очередь заботится о защите от несанкционированного доступа — конфиденциальности.

На верхний уровень выносится управление защитными ресурсами и координация использования этих ресурсов, выделение специального персонала для защиты критически важных систем, поддержание контактов с другими организациями, обеспечивающими или контролирующими режим безопасности.

Политика верхнего уровня должна четко очерчивать сферу своего влияния. Возможно, это будут все компьютерные системы организации или даже больше, если политика регламентирует некоторые аспекты использования сотрудниками своих домашних компьютеров. В политике должны быть определены обязанности должностных лиц по выработке программы безопасности и по проведению ее в жизнь.

Политика верхнего уровня имеет дело с тремя аспектами законопослушности и исполнительской дисциплины:

Вообще говоря, на верхний уровень следует выносить минимум вопросов. Подобное вынесение целесообразно, когда оно сулит значительную экономию средств в масштабе компании или когда иначе поступить просто невозможно.

К среднему уровню можно отнести вопросы, касающиеся отдельных аспектов информационной безопасности, но важные для различных систем, эксплуатируемых организацией. Примеры таких вопросов: широкий доступ в доступ в Internet и сочетание свободы получения информации с защитой от внешних угроз, использование домашних компьютеров, применение пользователями неофициального или несанкционированного программного обеспечения и т.д. Политика среднего уровня должна для каждого аспекта освещать следующие темы.

Описание аспекта. Например, если рассмотреть применение пользователями неофициального программного обеспечения, последнее можно определить как обеспечение, которое не было одобрено и/или закуплено и внедрено на уровне организации.

Область применения. Следует специфицировать, где, когда, как, по отношению к кому и чему применяется данный аспект политики безопасности. Например, касается ли организаций-субподрядчиков политика отношения к неофициальному программному обеспечению? Затрагивает ли она работников, пользующихся карманными компьютерами и ноутбуками и вынужденных переносить информацию на производственные машины?

Позиция организации. Продолжая пример с неофициальным программным обеспечением, можно обозначить позиции полного запрета или выработки процедуры приемки и использования подобного обеспечения и т.п. Позиция может быть сформулирована в общем виде, как набор целей, которые преследует организация в данном аспекте. Вообще говоря, содержание документов по политике безопасности, так и перечень таких документов, может быть существенно различным для разных организаций.

Роли, обязанности и ответственность. В документ необходимо включить информацию о должностных лицах, отвечающих за проведение политики безопасности в жизнь. Например, если для использования работником неофициального программного обеспечения нужно официальное разрешение, то должно быть известно, у кого и как его следует получать. Если должны проверяться дискеты, принесенные с других компьютеров, необходимо описать процедуру проверки. Если неофициальное программное обеспечение использовать нельзя, следует знать, кто следит за выполнением данного правила.

Законопослушность. Политика должна содержать общее описание запрещенных действий с несанкционированным ПО и наказаний за них.

Точки контакта. Должно быть известно, куда и к каким документам следует обращаться за разъяснениями, помощью и дополнительной информацией. Обычно "точкой контакта" служит должностное лицо и/или доступный раздел соответствующей библиотеки или хранилища.

Политика безопасности нижнего уровня относится к конкретным сервисам. Она включает в себя конкретные цели и задачи, правила и способы их достижения. В отличие от двух верхних уровней, рассматриваемая политика должна быть гораздо детальнее. Есть много вещей, специфичных для отдельных сервисов, которые нельзя единым образом регламентировать в рамках всей организации. В то же время эти вещи настолько важны для обеспечения режима безопасности, что решения, относящиеся к ним, должны приниматься на управленческом, а не техническом уровне. Типичные вопросы, на которые следует дать ответ при следовании политике безопасности нижнего уровня:

При формулировке целей политика нижнего уровня может исходить из соображений целостности, доступности и конфиденциальности, но она не должна останавливаться только на них. Например, если речь идет о системе расчета заработной платы, можно поставить цель, чтобы только работникам бухгалтерии и отдела кадров позволялось вводить и модифицировать информацию. В общем случае цели должны связывать между собой объекты сервиса и осмысленные действия с ними.

Исходя из целей, формулируются правила безопасности, описывающие, кто, что и при каких условиях может делать. Чем детальнее правила, чем более формально они изложены, тем проще поддержать их выполнение программно-техническими мерами и средствами.

Для разработки и внедрения политики ИБ, как правило, создаётся рабочая группа. Формирование такой группы по информационной безопасности актуально, прежде всего, для крупных компаний, в которых процесс изменения информационных технологий является постоянным, в него вовлечено большое количество людей — поэтому так важно предусмотреть механизм, предоставляющий им возможность постоянного общения. Создание рабочей группы, имеющий свой информационный ресурс (форум) в Intranet, позволяет обеспечить соответствующую координацию комплекса вопросов по обеспечению ИБ и избежать проблем, связанных с недостаточной информированностью всех заинтересованных лиц. Фактически, с точки зрения российских реалий, такой форум является постоянно действующим органом компании, включающим в свой состав представителей наиболее значимых подразделений компании, а также сотрудников служб информационной, экономической и общей безопасности.

К компетенции этого органа относятся разработка динамической модели информационной безопасности, включающей:

Рабочая группа является ведущим органом по проведению организационно-режимных процессов и разработке стандартов организации, определяющих режим работы компании в части, касающейся информационной безопасности. Она отвечает за исполнение концепции (политики) информационной безопасности и может быть создана не только в рамках компании, но и в рамках ее крупных структурных подразделений. К компетенции этой рабочей группы относятся следующие вопросы:

В рабочую группу должны входить специалисты следующих подразделений: представитель высшего менеджмента в лице заместителя генерального директора или технической дирекции (департамента), службы общей безопасности, кадровой службы, служб экономической и информационной безопасности, юридической службы, представители аналитических отделов и служб, а также службы менеджмента качества.

Распределение ответственности за обеспечение безопасности включает необходимость выполнения следующих действий:

Совершенно очевидно, что реализация политики информационной безопасности вовлекает много специалистов высокого класса и требует существенных затрат. Во всех случаях необходимо найти разумный компромисс, когда за приемлемую цену будет обеспечен приемлемый уровень безопасности, а работники не окажутся чрезмерно ограничены в использовании необходимых информационных ресурсов. Обычно ввиду особой важности данного вопроса наиболее регламентировано и детально задаются права доступа к информационным объектам и устройствам.

Неоднократно отмечено, что сотрудники являются как самым сильным, так одновременно и самым слабым звеном в обеспечении информационной безопасности. Необходимо донести до сотрудников мысль о том, что обеспечение информационной безопасности — обязанность всех без исключения сотрудников. Это достигается путем введения процедуры ознакомления с требованиями политики ИБ и подписания соответствующего документа о том, что сотрудник ознакомлен, ему понятны все требования политики и он обязуется их выполнять.

Политика позволяет ввести требования по поддержанию необходимого уровня безопасности в перечень обязанностей каждого сотрудника. В процессе выполнения ими трудовых обязанностей для сотрудников необходимо периодически проводить ознакомление и обучение вопросам обеспечения информационной безопасности. Критически важным условием для успеха в области обеспечения информационной безопасности компании становится создание в компании атмосферы, благоприятной для создания и поддержания высокого приоритета информационной безопасности. Чем крупнее компания, тем более важной становится информационная поддержка и мотивация сотрудников по вопросам безопасности.

Анализ и управление рисками при реализации информационной безопасности

Одним из важнейших аспектов реализации политики ИБ является анализ угроз, оценка их достоверности и тяжести вероятных последствий. Реально риск появляется там, где есть вероятность осуществления угрозы, при этом величина риска прямо пропорциональна величине этой вероятности (рис. 4.11).

Суть деятельности по управлению рисками состоит в том, чтобы оценить их размер, выработать меры по уменьшению и создать механизм контроля того, что остаточные риски не выходят за приемлемые ограничения. Таким образом, управление рисками включает в себя два вида деятельности: оценка рисков и выбор эффективных и экономичных защитных и регулирующих механизмов. Процесс управления рисками можно подразделить на следующие этапы [Галатенко В. А., 2006]:

Неопредленнось как основа формирования риска


Рис. 4.11.  Неопредленнось как основа формирования риска

Политика ИБ включает разработку стратегии управления рисками разных классов.

Краткий перечень наиболее распространенных угроз приводился выше (см. п. 17.2). Целесообразно выявлять не только сами угрозы, но и источники их возникновения — это поможет правильно оценить риск и выбрать соответствующие меры нейтрализации. Например, нелегальный вход в систему повышает риск подбора пароля или подключения к сети неавторизованного пользователя или оборудования.

Очевидно, что для противодействия каждому способу нелегального входа нужны свои механизмы безопасности. После идентификации угрозы необходимо оценить вероятность ее осуществления и размер потенциального ущерба.

Оценивая тяжесть ущерба, необходимо иметь в виду не только непосредственные расходы на замену оборудования или восстановление информации, но и более отдаленные, в частности подрыв репутации компании, ослабление её позиций на рынке и т. п.

После проведения идентификации и анализа угроз, их возможных последствий имеется несколько подходов к управлению: оценка риска, уменьшение риска, уклонение от риска, изменение характера риска, принятие риска, выработка корректирующих мероприятий (рис. 4.12).

Схема управления рисками


Рис. 4.12.  Схема управления рисками

При идентификации активов и информационных ресурсов — тех ценностей, которые нужно защитить — следует учитывать не только компоненты информационной системы, но и поддерживающую инфраструктуру, персонал, а также нематериальные ценности, в том числе текущий рейтинг и репутацию компании. Тем не менее, одним из главных результатов процесса идентификации активов является получение детальной информационной структуры организации и способов ее использования.

Выбор анализируемых объектов и степень детальности их рассмотрения — следующий шаг в оценке рисков. Для небольшой организации допустимо рассматривать всю информационную инфраструктуру, для крупной — следует сосредоточиться на наиболее важных (критичных) сервисах. Если важных сервисов много, то выбираются те из них, риски для которых заведомо велики или неизвестны. Если информационной основой организации является локальная сеть, то в число аппаратных объектов следует включить компьютеры, периферийные устройства, внешние интерфейсы, кабельное хозяйство и активное сетевое оборудование.

К программным объектам следует отнести операционные системы (сетевая, серверные и клиентские), прикладное программное обеспечение, инструментальные средства, программы управления сетью и отдельными подсистемами. Важно зафиксировать в каких узлах сети хранится программное обеспечение, где и как используется. Третьим видом информационных объектов являются данные, которые хранятся, обрабатываются и передаются по сети. Следует классифицировать данные по типам и степени конфиденциальности, выявить места их хранения и обработки, а также способы доступа к ним. Все это важно для оценки рисков и последствий нарушений информационной безопасности.

Оценка рисков производится на основе накопленных исходных данных и оценки степени определенности угроз. Вполне допустимо применить такой простой метод, как умножение вероятности осуществления угрозы на величину предполагаемого ущерба. Если для вероятности и ущерба использовать трехбалльную шкалу, то возможных произведений будет шесть: 1, 2, 3, 4, 6 и 9. Первые два результата можно отнести к низкому риску, третий и четвертый — к среднему, два последних — к высокому. По этой шкале можно оценивать приемлемость рисков.

Если какие-либо риски оказались недопустимо высокими, необходимо реализовать дополнительные защитные меры. Для ликвидации или уменьшения слабости, сделавшей опасную угрозу реальной, можно применять несколько механизмов безопасности, отличающихся эффективностью и невысокой стоимостью. Например, если велика вероятность нелегального входа в систему, можно ввести длинные пароли, задействовать программу генерации паролей или закупить интегрированную систему аутентификации на основе интеллектуальных карт. Если имеется вероятность умышленного повреждения серверов различного назначения, что грозит серьезными последствиями, можно ограничить физический доступ персонала в серверные помещения и усилить их охрану.

Технология оценки рисков должна сочетать формальные метрики и формирование реальных количественных показатели для оценки. С их помощью необходимо ответить на два вопроса: приемлемы ли существующие риски, и если нет, то какие защитные средства экономически выгодно использовать.

Схема оценки и сниженя рисков


Рис. 4.13.  Схема оценки и сниженя рисков

Методология снижения рисков. Многие риски можно существенно уменьшить путем использования простых и недорогих контрмер. Например, грамотное (регламентированное) управление доступом снижает риск несанкционированного вторжения. От некоторых классов рисков можно уклониться — вынесение Web-сервера организации за пределы локальной сети позволяет избежать риска несанкционированного доступа в локальную сеть со стороны Web-клиентов. Некоторые риски не могут быть уменьшены до малой величины, однако после реализации стандартного набора контрмер их можно принять, постоянно контролируя остаточную величину риска (рис. 4.13).

Оценка стоимости защитных мер должна учитывать не только прямые расходы на закупку оборудования и/или программного обеспечения, но и расходы на внедрение новинки, обучение и переподготовку персонала. Эту стоимость можно выразить в некоторой шкале и затем сопоставить ее с разностью между вычисленным и приемлемым риском. Если по этому показателю средство защиты оказывается экономически выгодным, его можно принять к дальнейшему рассмотрению.

Итерационный процесс управления рисками


Рис. 4.14.  Итерационный процесс управления рисками

Контроль остаточных рисков в обязательном порядке включается в текущий контроль системы ИБ. Когда намеченные меры приняты, необходимо проверить их действенность — убедиться, что остаточные риски стали приемлемыми. В случае систематического повышения остаточных рисков необходимо проанализировать допущенные ошибки и немедленно принять корректирующие меры.

Управление рисками является многоступенчатым итерационным процессом (рис. 4.14).

Практически все его этапы связаны между собой, и по завершении почти любого из них может выявиться необходимость возврата к предыдущему. Так, при идентификации активов может возникнуть понимание, что выбранные границы анализа следует расширить, а степень детализации — увеличить. Особенно труден первичный анализ, когда многократные возвраты к началу неизбежны. Управление рисками — типичная оптимизационная задача, принципиальная трудность состоит в её грамотной постановке на уровне высшего менеджмента, сочетании оптимальных методик и описания исходных данных (рис. 4.15).

Формирование деятельности по управлению ИТ-рисками


Рис. 4.15.  Формирование деятельности по управлению ИТ-рисками

Методологии "Оценка рисков" (Risk Assessment) и "Управление рисками" (Risk Management) стали неотъемлемой составляющей деятельности в области обеспечения непрерывности бизнеса (Business Continuity) и информационной безопасности (Information Security). Программа реализации ИБ и наборы политик базируются на совокупности системных действий и практических шагов (рис. 4.16-рис. 4.19).

Совокупности системных действий и практических шагов (1)


Рис. 4.16.  Совокупности системных действий и практических шагов (1)

Совокупности системных действий и практических шагов (2)


Рис. 4.17.  Совокупности системных действий и практических шагов (2)

Совокупности системных действий и практических шагов (3)


Рис. 4.18.  Совокупности системных действий и практических шагов (3)

Совокупности системных действий и практических шагов (4)


Рис. 4.19.  Совокупности системных действий и практических шагов (4)

Подготовлено и активно используются более десятка различных международных стандартов и спецификаций, детально регламентирующих процедуры управления информационными рисками: ISO 15408: 1999 ("Common Criteria for Information Technology Security Evaluation"), ISO 17799:2002 ("Code of Practice for Information Security Management"), NIST 80030, SAS 78/94, COBIT.

Методика и инструментальное средство RA Software Tool основаны на требованиях международных стандартов ISO 17999 и ISO 13335 (части 3 и 4), а также на требованиях руководств Британского национального института стандартов (BSI) — PD 3002 ("Руководство по оценке и управлению рисками"), PD 3003 ("Оценка готовности компании к аудиту в соответствии с BS 7799"), PD 3005 ("Руководство по выбору системы защиты").

На практике такие методики управления рисками позволяют:

Отработка рисков включает в себя ряд важных этапов, которые в обязательном порядке включаются в плановую работу по обеспечению информационной безопасности (рис. 4.20).

Применение соответствующих программных средств позволяет уменьшить трудоемкость проведения анализа рисков и выбора контрмер. В настоящее время разработано более десятка программных продуктов для анализа и управления рисками базового уровня безопасности. Примером достаточно простого средства является программный пакет BSS (Baseline Security Survey, UK).

Программные продукты более высокого класса: CRAMM (компания Insight Consulting Limited, UK), Risk Watch, COBRA (Consultative Objective and Bi-Functional Risk Analysis), Buddy System. Наиболее популярный из них — CRAMM (Complex Risk Analysis and Management Method), реализующий метод анализа и контроля рисков. Существенным достоинством метода является возможность проведения детального исследования в сжатые сроки с полным документированием результатов.

Этапы отработка риска


Рис. 4.20.  Этапы отработка риска

В основе методов, подобных CRAMM, лежит комплексный подход к оценке рисков, сочетающий количественные и качественные методы анализа. Метод является универсальным и подходит как для больших, так и для мелких организаций, как правительственного, так и коммерческого сектора.

К сильным сторонам метода CRAMM относится следующее:

Для коммерческих организаций имеется коммерческий профиль стандартов безопасности (Commercial Profile), для правительственных организаций — правительственный (Government Profile). Правительственный вариант профиля, также позволяет проводить аудит на соответствие требованиям американского стандарта TCSEC ("Оранжевая книга").

Соотношение эффективности и рентабельности систем информационной безопасности

Часто оказывается довольно трудно или практически невозможно оценить прямой экономический эффект от затрат на ИБ. Тем не менее современные требования бизнеса, предъявляемые к информационной безопасности, диктуют настоятельную необходимость использовать обоснованные технико-экономические методы и средства, позволяющие количественно измерять уровень защищенности компании, а также оценивать экономическую эффективность затрат на ИБ.

Можно использовать, например, следующие показатели: экономическую эффективности и непрерывность бизнеса (Business Continuity and Productivity — BCP), общую величина затрат на внедрение системы ИБ (Net Present Value — NPV), совокупную стоимости владения системой ИБ (Тotal Сost of Оwnership — TCO), коэффициент возврата инвестиций в ИБ (Return on Investment — ROI) и другие. В целом эти показатели позволяют:

Количественно показатель ТСО выражается суммой ежегодных прямых и косвенных затрат на функционирование корпоративной системы защиты информации. ТСО может рассматриваться как ключевой количественный показатель эффективности ИБ в компании, так как позволяет не только оценить совокупные затраты на ИБ, но управлять этими затратами для достижения требуемого уровня защищенности КИС.

Прямые затраты включают как капитальные компоненты затрат (элементы Software/Hardware, телекоммуникации, разработка, внедрение, эксплуатация, сопровождение, совершенствование непосредственно системы ИБ, административное управление), так и трудозатраты, которые учитываются в категориях производственных операций и административного управления. Сюда же относят затраты на обучение и повышение квалификации персонала, консалтинг по ИБ, услуги удаленных пользователей, аутсорсинг и др., связанные с поддержкой деятельности системы ИБ и организации в целом.

Косвенные затраты отражаются в составе затрат посредством таких измеримых показателей как простои, сбои в работе и отказы корпоративной системы защиты информации и КИС в целом, как затраты на операции и поддержку (не относящиеся к прямым затратам). Часто косвенные затраты играют значительную роль, так как они обычно изначально не видны и не отражаются в бюджете на ИБ, а выявляются при анализе затрат в последствии — это в конечном счете приводит к росту "скрытых" затрат компании на ИБ, не учитываемых в совокупной стоимости продукта компании.

В ходе работ по организации ИБ проводится сбор информации и расчет показателей ТСО, BCP и ROI организации по следующим параметрам:

Анализ собранных показателей позволяет оценить и сравнить состояние защищенности КИС компании с типовым профилем защиты, в том числе показать узкие места в организации защиты, на которые следует обратить внимание. Иными словами, на основе полученных данных можно сформировать понятную с экономической точки зрения стратегию и тактику развития корпоративной системы защиты информации, например: "сейчас мы тратим на ИБ столько-то, если будем тратить столько-то по конкретным направлениям ИБ, то получим такой-то реальный экономический эффект".

В целом, определение затрат компании на ИБ подразумевает решение следующих трех задач [Петренко С,. 2006]:

Рассмотрим каждую из перечисленных задач.

Оценка текущего уровня ТСО. В ходе работ по оценке ТСО проводится сбор информации и расчет показателей ТСО организации по следующим направлениям:

Аудит ИБ компании. По результатам собеседования с менеджерами компании и проведения инструментальных проверок уровня защищенности организации выполняется анализ следующих основных аспектов:

На основе проведенного анализа выбирается модель ТСО, сравнимая со средними и оптимальными значениями для репрезентативной группы аналогичных организаций, имеющих схожие с рассматриваемой организацией показатели по объему бизнеса. Такая группа выбирается из банка данных по эффективности затрат на ИБ и эффективности соответствующих профилей защиты аналогичных компаний.

Сравнение текущего показателя ТСО проверяемой компании с модельным значением показателя ТСО позволяет провести анализ эффективности организации ИБ компании, результатом которого является определение "узких" мест в организации, причин их появления и выработка дальнейших шагов по реорганизации корпоративной системы защиты информации и обеспечения требуемого уровня защищенности КИС.

Формирование целевой модели ТСО. По результатам проведенного аудита моделируется целевая (желаемая) модель, учитывающая перспективы развития бизнеса и корпоративной системы защиты информации (активы, сложность, методы лучшей практики, типы СЗИ и СКЗИ, квалификация сотрудников компании и т. п.).

Кроме того, рассматриваются капитальные расходы и трудозатраты, необходимые для проведения преобразований текущей среды в целевую среду. В трудозатраты на внедрение включаются затраты на планирование, развертывание, обучение и разработку. Сюда же входят возможные временные увеличения затрат на управление и поддержку. Для обоснования эффекта от внедрения новой корпоративной системы защиты информации (ROI) могут быть использованы модельные характеристики снижения совокупных затрат (ТСО), отражающие возможные изменения в корпоративной системе защиты информации.

Проиллюстрируем сказанное на примере определения оптимальной величины соотношения "эффективность-рентабельность" [Астахов А.Н., 2002]. Эффективные системы защиты стоят дорого, и поэтому при формировании контрмер, комплектовании отделов ИБ и выборе соответствующих программно-аппаратных средств необходимо учитывать рентабельность средств защиты.

На рис. 4.21 показано уменьшение относительного ущерба вследствие применения средств защиты информации. Здесь величина - мера общей эффективности защиты, - величина максимального ущерба. Чем больше , тем меньший ущерб создадут угрозы. Таким образом, мерой риска является величина . Стремление обеспечить высокоэффективную защиту, когда близко к 1 (или 100%), приводит к значительным расходам на ресурсы.

Зависимость эффективности и рентабельности  системы защиты от величины общих ресурсов


Рис. 4.21.  Зависимость эффективности и рентабельности системы защиты от величины общих ресурсов

Чем выше совокупные ассигнования на ресурсы, тем на большую эффективность защиты можно рассчитывать (рис. 4.21, сплошная кривая). Однако чрезмерные расходы на собственную безопасность не всегда оправданы экономически.

Можно столкнуться с ситуацией, когда стоимость защиты превысит уровень максимального ущерба от реализации угроз. В этом случае возникает опасность угрозы "разорения" от защиты. Её уровень также можно оценить, к примеру, величиной разности относительного "защищенности" и относительных затрат на ресурсы. Назовем эту величину рентабельностью защиты. Если она положительная (т. е.), то защита рентабельна. В отличие от эффективности, чем больше затраты , тем меньше рентабельность. Эта противоположность создает неоднозначную ситуацию в выборе стратегии защиты, которую необходимо заранее планировать, чтобы защита не привела к значительным убыткам.

На рис. 4.22 представлена типовая зависимость эффективности защиты и ее рентабельности от максимального ущерба . По сути, это является мерой масштабности бизнеса. Легко видеть, что сделать защиту одновременно и высокоэффективной, и высокорентабельной под силу лишь крупным коммерческим структурам (область ), для которых характерны большие величины максимального ущерба.

Зависимость эффективности и рентабельности защиты от величины максимального ущерба


Рис. 4.22.  Зависимость эффективности и рентабельности защиты от величины максимального ущерба

Достаточно, например, чтобы соотносилось с . Тогда при получим . В худшем положении оказываются интересы среднего (область ) и малого (область ) бизнеса, поскольку из-за ограниченности ресурсов выбор стратегии защиты более сложен. Рекомендации просты: надо обеспечить максимально возможную эффективность при положительном показателе рентабельности защиты. А это означает, что в первую очередь следует противодействовать наиболее вероятным и опасным угрозам. Малые и средние компании должны разумно сочетать необходимую защиту и экономию ресурсов.

Рис. 4.23 показывает, какую выгоду могут обеспечить кооперативные формы обеспечения ИБ. Здесь представлены характерные зависимости величины риска и общих затрат на ресурсы от эффективности автономной (I) и кооперативной (II) защиты. Точка пересечения А0 зависимостей и для автономной защиты соответствует примерно области минимальных общих потерь .

Зависимости риска R и расходов на ресурсы В0 от эффективности защиты Q0


Рис. 4.23.  Зависимости риска R и расходов на ресурсы В0 от эффективности защиты Q0

Экономия ресурсов выразится в том, что исходная зависимость (I) окажется "выше" новой зависимости (II), которая отображает кооперацию в использовании ресурсов. Соответственно новая точка пересечения кривых окажется правее прежней . Практически это означает, что при сохранении рентабельности защиты увеличивается ее эффективность. Причем выигрыш тем существенней, чем больше экономия.

На практике в основном кооперируются по двум формам - материально-техническим и кадровым ресурсам, которые и являются составными частями общего механизма обеспечения ИБ.

Приобретение и поддержка средств защиты - это не бесполезная трата финансовых средств. Это инвестиции, ко-торые при правильном вложении окупятся с лихвой и по-зволят вывести бизнес на желаемую высоту!

Лекция 5. Защита информации в информационных системах и компьютерных сетях

В лекции рассказывается о методологии обеспечения безопасности систем и сетей предприятия.

Существование и развитие информационного общества на современном этапе невозможно без использования информационных сетей, глобальных компьютерных сетей и сетей связи — радио, телевидения, фиксированных и мобильных телефонных сетей, Internet и т.д. В связи с этим обеспечение доверия и безопасности невозможно без предъявления к этим сетям не только требований по обеспечению надёжности передачи данных, стабильности работы, качества и масштабов охвата, но и по обеспечению информационной безопасности.

Информационная безопасность сетей представляет собой "состояние защищённости сбалансированных интересов производителей информационно-коммуникационных технологий и конкретно сетей, потребителей, операторов и органов государственной власти в информационной сфере. В свою очередь информационная сфера представляет собой совокупность информации, информационной инфраструктуры, субъектов, осуществляющих сбор, формирование, распространение и использование информации, а также системы регулирования отношений, возникающих при использовании сетей связи" [материалы Международного конгресса "Доверие и безопасность в информационном обществе", 21 апреля 2003 г., http://www.rans.ru/arrangements/int_cong_doc.doc].

Благодаря своей открытости и общедоступности компьютерные сети и сети связи общего пользования являются удобным средством для обеспечения взаимодействия граждан, бизнеса и органов государственной власти. Однако чем более открыты сети, тем более они уязвимы. Можно выделить ряд особенностей, которые делают сети уязвимыми, а нарушителей — практически неуловимыми:

Большинство владельцев и операторов принимают необходимые меры по обеспечению информационной безопасности своих сетей. В то же время, для современного состояния информационной безопасности сетей характерны следующие причины, приводящие к крупным проблемам, требующим скорейшего решения:

Наиболее часто встречающиеся дефекты защиты, отмеченные компаниями, работающими в области электронного бизнеса и защиты информации:

Любая успешная атака нарушителя, направленная на реализацию угрозы информационной безопасности сети, опирается на полученные нарушителем знания об особенностях её построения и слабых местах. Причинами появления уязвимостей в сетях могут быть:

Постоянный аудит сетей связи с целью выявления уязвимостей и возможных угроз обеспечивает определение "слабого звена", а уровень защищённости "слабого звена" определяет, в конечном счёте, уровень информационной безопасности сети в целом.

Принципиальным является рассмотрение воздействий нарушителей или атак как неизбежного фактора функционирования сетей и систем связи. Это обстоятельство является обратной стороной информатизации экономики и бизнеса.

В этих условиях обеспечение информационной безопасности сетей становится триединой задачей, включающей мониторинг функционирования, обнаружение атак и принятие адекватных мер противодействия.

Адекватные меры противодействия могут носить технический характер и предусматривать реконфигурацию информационной области сети. Они могут быть также организационными и предусматривать обращение операторов сетей связи к силовым структурам с предоставлением необходимой информации для выявления и привлечения к ответственности нарушителей.

Обеспечение информационной безопасности сетей, систем и средств связи означает создание процесса, которым необходимо постоянно управлять и который является неотъемлемой составной частью процесса функционирования компьютерных вычислительных устройств и сетей. Построив модель функционирования сети, включающую процесс управления обеспечением информационной безопасности, необходимо далее определить стандарты информационной безопасности, поддерживающие эту модель. Значение исследований процессов стандартизации и совершенствования нормативно-правовой базы будут постоянно возрастать.

Вопросы информационной безопасности, защиты информации и данных неразрывно связаны с безопасностью программно-аппаратных комплексов и сетевых устройств, образующих информационные системы и сети различного назначения. Такие системы должны отвечать серьёзным требованиям по обеспечению надёжности сбора, обработки, архивирования и передачи данных по открытым и закрытым сетям и обеспечению их максимальной защиты.

Определение защищенной информационной системы

В отличие от локальных корпоративных сетей, подключенных к Internet, где обычные средства безопасности в большой степени решают проблемы защиты внутренних сегментов сети от несанкционированного доступа, распределенные корпоративные информационные системы, системы электронной коммерции и предоставления услуг пользователям Internet предъявляют повышенные требования в плане обеспечения информационной безопасности.

Межсетевые экраны, системы обнаружения атак, сканеры для выявления уязвимостей в узлах сети, операционных систем и СУБД, фильтры пакетов данных на маршрутизаторах — достаточно ли всего этого мощного арсенала (так называемого "жёсткого периметра") для обеспечения безопасности критически важных информационных систем, работающих в Internet и Intranet? Практика и накопленный к настоящему времени опыт показывают — чаще всего нет!

В "Оранжевой книге" надежная и защищённая информационная система определяется как "система, использующая достаточные аппаратные и программные средства, чтобы обеспечить одновременную достоверную обработку информации разной степени секретности различными пользователями или группами пользователей без нарушения прав доступа, целостности и конфиденциальности данных и информации, и поддерживающая свою работоспособность в условиях воздействия на неё совокупности внешних и внутренних угроз" [Department of Defense Trusted Computer System Evaliation Criteria (TCSEC). USA DoD 5200.28-STD, 1993] .

Это качественное определение содержит необходимое и достаточное условие безопасности. При этом не обуславливается, какие механизмы и каким образом реализуют безопасность — практическая реализация зависит от многих факторов: вида и размера бизнеса, предметной области деятельности компании, типа информационной системы, степени её распределённости и сложности, топологии сетей, используемого программного обеспечения и т.д.

Концепция "Защищенные информационные системы" включает ряд законодательных инициатив, научных, технических и технологических решений, готовность государственных организаций и компаний использовать их для того, чтобы люди, используя устройства на базе компьютеров и программного обеспечения, чувствовали себя так же комфортно и безопасно. В общем случае можно говорить о степени доверия, или надежности систем, оцениваемых по двум основным критериям: наличие и полнота политики безопасности и гарантированность безопасности.

Наличие и полнота политики безопасности — набор внешних и корпоративных стандартов, правил и норм поведения, отвечающих законодательным актам страны и определяющих, как организация собирает, обрабатывает, распространяет и защищает информацию. В частности, стандарты и правила определяют, в каких случаях и каким образом пользователь имеет право оперировать с определенными наборами данных. В политике безопасности сформулированы права и ответственности пользователей и персонала. В зависимости от сформулированной политики можно выбирать конкретные механизмы, обеспечивающие безопасность системы. Чем больше информационная система и чем больше она имеет "входов" и "выходов" (распределённая система), тем "строже", детализированнее и многообразнее должна быть политика безопасности.

Гарантированность безопасности — мера доверия, которая может быть оказана архитектуре, инфраструктуре, программно-аппаратной реализации системы и методам управления её конфигурацией и целостностью. Гарантированность может проистекать как из тестирования и верификации, так и из проверки (системной или эксплуатационной) общего замысла и исполнения системы в целом и ее компонентов. Гарантированность показывает, насколько корректны механизмы, отвечающие за проведение в жизнь политики безопасности. Гарантированность является пассивным, но очень важным компонентом защиты, реализованным качеством разработки, внедрения, эксплуатации и сопровождения информационной системы и заложенных принципов безопасности.

Концепция гарантированности является центральной при оценке степени, с которой информационную систему можно считать надежной. Надежность определяется всей совокупностью защитных механизмов системы в целом и надежностью вычислительной базы (ядра системы), отвечающих за проведение в жизнь политики безопасности. Надежность вычислительной базы определяется ее реализацией и корректностью исходных данных, вводимых административным и операционным персоналом. Оценка уровня защищенности ИТ/ИС обычно производится по трём базовым группам критериев (табл. 1).

Таблица 1. Трёхуровневая модель параметров оценки защищенности ИС
Система целей Средства Исполнение
Общая цель
  • Защищенные информационные системы

Цели

  • Безопасность
  • Безотказность
  • Надежность
  • Деловое взаимодействие
Обеспечение
  • Защищенность
  • Конфиденциальность
  • Целостность
  • Готовность к работе
  • Точность
  • Управляемость
  • Безотказность
  • Прозрачность
  • Удобство пользования

Подтверждение доверия

  • Внутренняя оценка
  • Аккредитация
  • Внешний аудит

Установки

  • Законы, нормы
  • Характер ведения бизнеса
  • Контракты, обязательства
  • Внутренние принципы
  • Международные, отраслевые, и внутренние стандарты

Реализация

  • Методы взаимодействия с внешней и внутренней средой
  • Методы работ
  • Анализ рисков
  • Методы разработки, внедрения, эксплуатации и сопровождения
  • Обучение персонала

Основное назначение надежной вычислительной базы — выполнять функции монитора обращений и действий, то есть контролировать допустимость выполнения пользователями определенных операций над объектами. Монитор проверяет каждое обращение к программам или данным на предмет их согласованности со списком допустимых действий. Таким образом, важным средством обеспечения безопасности является механизм подотчетности или протоколирования. Надежная система должна фиксировать все события, касающиеся безопасности, а ведение протоколов дополняется аудитом — анализом регистрационной информации.

Эти общие положения являются основой для проектирования и реализации безопасности открытых информационных систем [Зегжда Д.П., Ивашко А.М., 2000].

Методология анализа защищенности информационной системы

При разработке архитектуры и создании инфраструктуры корпоративной ИС неизбежно встает вопрос о её защищенности от угроз. Решение вопроса состоит в подробном анализе таких взаимно пересекающихся видов работ, как реализация ИС и её аттестация, аудит и обследование безопасности ИС [Астахов А.Н., 2002].

Модель системы защиты с полным перекрытием


Рис. 5.1.  Модель системы защиты с полным перекрытием

Основой формального описания систем защиты традиционно считается модель системы защиты с полным перекрытием (рис. 5.1), в которой рассматривается взаимодействие "области угроз", "защищаемой области" и "системы защиты". Таким образом, имеем три множества: — множество угроз безопасности, — множество объектов (ресурсов) защищенной системы, — множество механизмов безопасности АС.

Элементы этих множеств находятся между собой в определенных отношениях, собственно и описывающих систему защиты. Для описания системы защиты обычно используется графовая модель. Множество отношений угроза-объект образует двухдольный граф . Цель защиты состоит в том, чтобы перекрыть все возможные ребра в графе. Это достигается введением третьего набора ; в результате получается трехдольный граф .

Развитие модели предполагает введение еще двух элементов (рис. 5.2). Здесь — набор уязвимых мест, определяемый подмножеством декартова произведения . Под уязвимостью системы защиты понимают возможность осуществления угрозы в отношении объекта . (На практике под уязвимостью системы защиты обычно понимают, те свойства системы, которые либо способствуют успешному осуществлению угрозы, либо могут быть использованы злоумышленником для её осуществления).

Модель системы защиты, содержащей уязвимости


Рис. 5.2.  Модель системы защиты, содержащей уязвимости

Определим B как набор барьеров, определяемый декартовым произведением , представляющих собой пути осуществления угроз безопасности, перекрытые средствами защиты. В результате получаем систему, состоящую из пяти элементов: , описывающую систему защиты с учетом наличия уязвимостей.

Для системы с полным перекрытием для любой уязвимости имеется устраняющий ее барьер. Иными словами, в подобной системе защиты для всех возможных угроз безопасности существуют механизмы защиты, препятствующие осуществлению этих угроз. Данное условие является первым фактором, определяющим защищенность ИС, второй фактор — "прочность" и надёжность механизмов защиты.

В идеале каждый механизм защиты должен исключать соответствующий путь реализации угрозы. В действительности же механизмы защиты обеспечивают лишь определённую степень сопротивляемости угрозам безопасности. Поэтому в качестве характеристик элемента набора барьеров может рассматриваться набор , где — вероятность появления угрозы, — величина ущерба при удачном осуществлении угрозы в отношении защищаемых объектов (уровень серьезности угрозы), а — степень сопротивляемости механизма защиты , характеризующаяся вероятностью его преодоления.

Надёжность барьера характеризуется величиной остаточного риска , связанного с возможностью осуществления угрозы в отношении объекта информационной системы при использовании механизма защиты mk. Эта величина определяется по формуле: . Для нахождения примерной величины защищенности можно использовать следующую простую формулу: , где является суммой всех остаточных рисков, , .

Суммарная величина остаточных рисков характеризует приблизительную совокупную уязвимость системы защиты, а защищенность определяется как величина, обратная уязвимости. При отсутствии в системе барьеров , "перекрывающих" выявленные уязвимости, степень сопротивляемости механизма защиты принимается равной нулю.

На практике получение точных значений приведенных характеристик барьеров затруднено, поскольку понятия угрозы, ущерба и сопротивляемости механизма защиты трудно формализовать. Так, оценку ущерба в результате несанкционированного доступа к информации политического и военного характера точно определить вообще невозможно, а определение вероятности осуществления угрозы не может базироваться на статистическом анализе. Построение моделей системы защиты и анализ их свойств составляют предмет "теории безопасных систем", еще только оформляющейся в качестве самостоятельного направления.

Вместе с тем, для защиты информации экономического характера, допускающей оценку ущерба, разработаны стоимостные методы оценки эффективности средств защиты. Для этих методов набор характеристик барьера дополняет величина затраты на построение средства защиты барьера . В этом случае выбор оптимального набора средств защиты связан с минимизацией суммарных затрат , состоящих из затрат на создание средств защиты и возможных затрат в результате успешного осуществления угроз .

Формальные подходы к решению задачи оценки защищенности из-за трудностей, связанных с формализацией, широкого практического распространения не получили. Значительно более действенным является использование неформальных классификационных подходов. Для этого применяют категорирование: нарушителей (по целям, квалификации и доступным вычислительным ресурсам); информации (по уровням критичности и конфиденциальности); средств защиты (по функциональности и гарантированности реализуемых возможностей), эффективности и рентабельности средств защиты и т. п.

Лекция 6. Обеспечение безопасности

В лекции рассказывается о методологических аспектах защиты информационных систем.

Требования к архитектуре ИС для обеспечения безопасности ее функционирования

Идеология открытых систем существенно отразилась на методологических аспектах и направлении развития сложных распределенных ИС. Она базируется на строгом соблюдении совокупности профилей, протоколов и стандартов де-факто и де-юре. Программные и аппаратные компоненты по этой идеологии должны отвечать важнейшим требованиям переносимости и возможности согласованной, совместной работы с другими удаленными компонентами. Это позволяет обеспечить совместимость компонент различных информационных систем, а также средств передачи данных. Задача сводится к максимально возможному повторному использованию разработанных и апробированных программных и информационных компонент при изменении вычислительных аппаратных платформ, ОС и процессов взаимодействия.

При создании сложных, распределенных информационных систем, проектировании их архитектуры, инфраструктуры, выборе компонент и связей между ними следует учитывать помимо общих (открытость, масштабируемость, переносимость, мобильность, защита инвестиций и т.п.) ряд специфических концептуальных требований, направленных на обеспечение безопасности функционирования самой системы и данных:

Подчеркнем, что технические системы безопасности, какими бы мощными они ни были, сами по себе не могут гарантировать надежность программно-технического уровня защиты. Только сфокусированная на безопасность архитектура ИС способна сделать эффективным объединение сервисов, обеспечить управляемость информационной системы, ее способность развиваться и противостоять новым угрозам при сохранении таких свойств, как высокая производительность, простота и удобство использования. Для того чтобы выполнить эти требования архитектура ИС должна строиться на следующих принципах.

Проектирование ИС на принципах открытых систем, следование признанным стандартам, использование апробированных решений, иерархическая организация ИС с небольшим числом сущностей на каждом уровне — все это способствует прозрачности и хорошей управляемости ИС.

Непрерывность защиты в пространстве и времени, невозможность преодолеть защитные средства, исключение спонтанного или вызванного перехода в небезопасное состояние — при любых обстоятельствах, в том числе нештатных, защитное средство либо полностью выполняет свои функции, либо полностью блокирует доступ в систему или ее часть

Усиление самого слабого звена, минимизация привилегий доступа, разделение функций обслуживающих сервисов и обязанностей персонала. Предполагается такое распределение ролей и ответственности, чтобы один человек не мог нарушить критически важный для организации процесс или создать брешь в защите по неведению или заказу злоумышленников.

Применительно к программно-техническому уровню принцип минимизации привилегий предписывает выделять пользователям и администраторам только те права доступа, которые необходимы им для выполнения служебных обязанностей. Это позволяет уменьшить ущерб от случайных или умышленных некорректных действий пользователей и администраторов.

Эшелонирование обороны, разнообразие защитных средств, простота и управляемость информационной системы и системой ее безопасности. Принцип эшелонирования обороны предписывает не полагаться на один защитный рубеж, каким бы надежным он ни казался. За средствами физической защиты должны следовать программно-технические средства, за идентификацией и аутентификацией — управление доступом, протоколирование и аудит.

Эшелонированная оборона способна не только не пропустить злоумышленника, но и в некоторых случаях идентифицировать его благодаря протоколированию и аудиту. Разнообразие защитных средств предполагает создание различных по своему характеру оборонительных рубежей, чтобы от потенциального злоумышленника требовалось овладение разнообразными и, по возможности, несовместимыми между собой навыками.

Простота и управляемость ИС в целом и защитных средств в особенности. Только в простой и управляемой системе можно проверить согласованность конфигурации различных компонентов и осуществлять централизованное администрирование. В этой связи важно отметить интегрирующую роль Web-сервиса, скрывающего разнообразие обслуживаемых объектов и предоставляющего единый, наглядный интерфейс. Соответственно, если объекты некоторого вида (например, таблицы базы данных) доступны через Интернет, необходимо заблокировать прямой доступ к ним, поскольку в противном случае система будет уязвимой, сложной и плохо управляемой.

Продуманная и упорядоченная структура программных средств и баз данных. Топология внутренних и внешних сетей непосредственно отражается на достигаемом качестве и безопасности ИС, а также на трудоемкости их разработки. При строгом соблюдении правил структурного построения значительно облегчается достижение высоких показателей качества и безопасности, так как сокращается число возможных ошибок в реализующих программах, отказов и сбоев оборудования, упрощается их диагностика и локализация.

В хорошо структурированной системе с четко выделенными компонентами (клиент, сервер приложений, ресурсный сервер) контрольные точки выделяются достаточно четко, что решает задачу доказательства достаточности применяемых средств защиты и обеспечения невозможности обхода этих средств потенциальным нарушителем.

Высокие требования, предъявляемые к формированию архитектуры и инфраструктуры на стадии проектирования ИС, определяются тем, что именно на этой стадии можно в значительной степени минимизировать число уязвимостей, связанных с непредумышленными дестабилизирующими факторами, которые влияют на безопасность программных средств, баз данных и систем коммуникации.

Анализ безопасности ИС при отсутствии злоумышленных факторов базируется на модели взаимодействия основных компонент ИС (рис. 6.1) [Липаев В. В., 1997]. В качестве объектов уязвимости рассматриваются:

Модель анализа безопасности информационных систем при отсутствии злоумышленных угроз


Рис. 6.1.  Модель анализа безопасности информационных систем при отсутствии злоумышленных угроз

Полное устранение перечисленных угроз принципиально невозможно. Задача состоит в выявлении факторов, от которых они зависят, в создании методов и средств уменьшения их влияния на безопасность ИС, а также в эффективном распределении ресурсов для обеспечения защиты, равнопрочной по отношению ко всем негативным воздействиям.

Стандартизация подходов к обеспечению информационной безопасности

Специалистам в области ИБ сегодня практически невозможно обойтись без знаний соответствующих профилей защиты, стандартов и спецификаций. Формальная причина состоит в том, что необходимость следования некоторым стандартам (например, криптографическим и "Руководящим документам" Гостехкомиссии РФ) закреплена законодательно. Убедительны и содержательные причины: стандарты и спецификации - одна из форм накопления и реализации знаний, прежде всего о процедурном и программно-техническом уровнях ИБ и ИС, в них зафиксированы апробированные, высококачественные решения и методологии, разработанные наиболее квалифицированными компаниями в области разработки ПО и безопасности программных средств.

На верхнем уровне можно выделить две существенно отличающиеся друг от друга группы стандартов и спецификаций:

1. оценочные стандарты, предназначенные для оценки и классификации ИС и средств защиты по требованиям безопасности;

2. спецификации, регламентирующие различные аспекты реализации и использования средств и методов защиты.

Эти группы дополняют друг друга. Оценочные стандарты описывают важнейшие с точки зрения ИБ понятия и аспекты ИС, играя роль организационных и архитектурных спецификаций. Специализированные стандарты и спецификации определяют, как именно строить ИС предписанной архитектуры и выполнять организационные и технические требования для обеспечения информационной безопасности (рис. 6.2, рис. 6.3).

Объекты стандартизации в открытой информационной системе


Рис. 6.2.  Объекты стандартизации в открытой информационной системе

Хронология стандартизации в сфере информационной безопасности


Рис. 6.3.  Хронология стандартизации в сфере информационной безопасности

Из числа оценочных необходимо выделить стандарт "Критерии оценки доверенных компьютерных систем" и его интерпретацию для сетевых конфигураций (Министерство обороны США), "Гармонизированные критерии Европейских стран", международный стандарт "Критерии оценки безопасности информационных технологий" и, конечно, "Руководящие документы" Гостехкомиссии РФ. К этой же группе относится и Федеральный стандарт США "Требования безопасности для криптографических модулей", регламентирующий конкретный, но очень важный и сложный аспект информационной безопасности.

Технические спецификации, применимые к современным распределенным ИС, создаются главным образом "Тематической группой по технологии Интернет" (Internet Engineering Task Force - IETF) и ее подразделением - рабочей группой по безопасности. Ядром технических спецификаций служат документы по безопасности на IP-уровне (IPSec). Кроме этого, анализируется защита на транспортном уровне (Transport Layer Security - TLS), а также на уровне приложений (спецификации GSS-API, Kerberos).

Интернет-сообщество уделяет должное внимание административному и процедурному уровням безопасности, создав серию руководств и рекомендаций: "Руководство по информационной безопасности предприятия", "Как выбирать поставщика Интернет-услуг", "Как реагировать на нарушения информационной безопасности" и др.

В вопросах сетевой безопасности востребованы спецификации X.800 "Архитектура безопасности для взаимодействия открытых систем", X.500 "Служба директорий: обзор концепций, моделей и сервисов" и X.509 "Служба директорий: каркасы сертификатов открытых ключей и атрибутов".

В последние 15 лет утверждена большая серия международной организацией по стандартизации (International Organization for Standardization - ISO) стандартов по обеспечению безопасности информационных систем и их компонентов. Подавляющее большинство из этих стандартов относятся к телекоммуникациям, процессам и протоколам обмена информацией в распределенных системах и защите ИС от несанкционированного доступа. В связи с этим при подготовке системы защиты и обеспечения безопасности из стандартов должны быть отобраны наиболее подходящие для всего жизненного цикла конкретного проекта ПС.

В следующей главе "Технологии и стандартизация открытых вычислительных и информационных систем" будет подробно рассказано о структуре и деятельности ISO и её технических комитетах, в частности об Объединенном техническом комитете № 1 (Joint Technical Committee 1 - JTC1 ), предназначенном для формирования всеобъемлющей системы базовых стандартов в области ИТ и их расширений для конкретных сфер деятельности. В зависимости от проблем, методов и средств защиты вычислительных и информационных систем международные стандарты ISO можно разделить на несколько групп [В. Липаев., http://www.pcweek.ru/themes/detail.php?ID=55087].

Первая группа стандартов - ISO/IEC JTC1/SC22 "Поиск, передача и управление информацией для взаимосвязи открытых систем (ВОС)" - создана и развивается под руководством подкомитета SC22. Стандарты этой группы посвящены развитию и детализации концепции ВОС. Защита информации в данной группе рассматривается как один из компонентов, обеспечивающих возможность полной реализации указанной концепции. Для этого определены услуги и механизмы защиты по уровням базовой модели ВОС, изданы и разрабатываются стандарты, последовательно детализирующие методические основы защиты информации и конкретные протоколы защиты на разных уровнях открытых систем.

Вторая группа стандартов - ISO/IEC JTC1/SC27 - разрабатывается под руководством подкомитета SC27 и ориентирована преимущественно на конкретные методы и алгоритмы защиты. В эту группу объединены методологические стандарты защиты информации и криптографии, независимо от базовой модели ВОС. Обобщаются конкретных методов и средств защиты в систему организации и управления защитой ИС.

В процессе планирования и проектирования программной системы защиты ИС целесообразно использовать третью группу из представленных ниже наиболее общих методологических стандартов, регламентирующих создание комплексов защиты. Вследствие близких целей стандартов их концепции и содержание частично перекрещиваются и дополняют друг друга. Поэтому стандарты целесообразно использовать совместно (создать профиль стандартов), выделяя и адаптируя их компоненты в соответствии с требованиями конкретного проекта ИС.

1. ISO 10181:1996. Ч. 1-7. "ВОС. Структура работ по обеспечению безопасности в открытых системах". Часть 1. Обзор. Часть 2. Структура работ по аутентификации. Часть 3. Структура работ по управлению доступом. Часть 4. Структура работ по безотказности. Часть 5. Структура работ по конфиденциальности. Часть 6. Структура работ по обеспечению целостности. Часть 7. Структура работ по проведению аудита на безопасность.

2. ISO 13335:1996-1998. Ч. 1-5. ИТ. ТО. "Руководство по управлению безопасностью". Часть 1. Концепция и модели обеспечения безопасности информационных технологий. Часть 2. Планирование и управление безопасностью информационных технологий. Часть 3. Техника управления безопасностью ИТ. Часть 4. Селекция (выбор) средств обеспечения безопасности. Часть 5. Безопасность внешних связей.

3. ISO 15408:1999. Ч.26 1-3. "Методы и средства обеспечения безопасности. Критерии оценки безопасности информационных технологий". Часть 1. Введение и общая модель. Часть 2. Защита функциональных требований. Часть 3. Защита требований к качеству.

Первый стандарт этой группы, ISO 10181, состоит из семи частей и начинается с общей концепции обеспечения безопасности открытых информационных систем и развивает положения стандарта ISO 7498-2. В первой его части приводятся основные понятия и общие характеристики методов защиты и акцентируется внимание на необходимости сертификации системы обеспечения безопасности ИС при ее внедрении. Далее кратко описаны основные средства обеспечения безопасности ИС, особенности работ по их созданию, основы взаимодействия механизмов защиты, принципы оценки возможных отказов от обслуживания задач ИС по условиям защиты. Показаны примеры построения общих схем защиты ИС в открытых системах. Содержание частей стандарта достаточно ясно определяется их названиями.

Второй стандарт, ISO 13335, отражает широкий комплекс методологических задач, которые необходимо решать при проектировании систем обеспечения безопасности любых ИС. В его пяти частях внимание сосредоточено на основных принципах и методах проектирования равнопрочных систем защиты ИС от угроз различных видов. Это руководство достаточно полно систематизирует основные методы и процессы подготовки проекта защиты для последующей разработки конкретной комплексной системы обеспечения безопасности функционирования ИС.

Изложение базируется на понятии риска от угроз любых негативных воздействий на ИС. В первой части стандарта описаны функции средств защиты и необходимые действия по их реализации, модели уязвимости и принципы взаимодействия средств защиты. При проектировании систем защиты рекомендуется учитывать: необходимые функции защиты, возможные угрозы и вероятность их осуществления, уязвимость, негативные воздействия исполненияугроз, риски; защитные меры; ресурсы (аппаратные, информационные, программные, людские) и их ограниченность. В остальных частях стандарта предложены и развиваются концепция и модель управления и планирования построения системы защиты, взаимодействие компонентов которой в общем виде представлено на рис. 6.4.

В стандарте ISO 13335 выделены функциональные компоненты и средства обеспечения безопасности, а также принципы их взаимодействия. Процессы управления защитой должны включать: управление изменениями и конфигурацией; анализ и управление риском; прослеживаемость функций; регистрацию, обработку и мониторинг инцидентов. Приводятся общие требования к оценке результатов обеспечения безопасности, а также возможные варианты организации работы специалистов для комплексного обеспечения безопасности ИС.

Систематизированы политика и техника планирования, выбора, построения и использования средств обеспечения безопасности для ограничения допустимого риска при различных схемах взаимодействия и средствах защиты. Рекомендуются различные подходы и стратегии при создании систем защиты и поддержке их последующего развития. Содержание частей стандарта детализирует общие концепции и достаточно точно определяется их названиями. Изложенную в стандарте модель планирования обеспечения безопасности целесообразно конкретизировать и использовать как фрагмент системного проекта разработки ИС.

Структура и содержание стандарта ISO 13335


Рис. 6.4.  Структура и содержание стандарта ISO 13335

Критерии оценки механизмов безопасности программно-технического уровня представлены в международном стандарте ISO 15408-1999 "Общие критерии оценки безопасности информационных технологий" ("The Common Criteria for Information Technology Security Evaluation"), принятом в 1999 году. Этот стандарт закрепил базовые основы стандартизации в области информационной защиты и получил дальнейшее развитие в серии стандартов, о которых будет сказано ниже.

В первой части стандарта представлены цели и концепция обеспечения безопасности, а также общая модель построения защиты ИС. Концепция базируется на типовой схеме жизненного цикла сложных систем, последовательной детализации требований и спецификаций компонентов. В ней выделены: окружающая среда; объекты; требования; спецификации функций; задачи инструментальных средств системы защиты. Изложены общие требования к критериям оценки результатов защиты, Профилю по безопасности, целям оценки требований и к использованию их результатов. Предложен проект комплекса общих целей, задач и критериев обеспечения безопасности ИС.

Во второй части представлена парадигма построения и реализации структурированных и детализированных функциональных требований к компонентам защиты ИС. Выделены и классифицированы одиннадцать групп (классов) базовых задач обеспечения безопасности ИС. Каждый класс детализирован наборами требований, которые реализуют определенную часть целей обеспечения безопасности и, в свою очередь, состоят из набора более мелких компонентов решения частных задач.

В классы включены и подробно описаны принципы и методы реализации требований к функциям безопасности: криптографическая поддержка; защита коммуникаций и транспортировка (транзакции) информации; ввод, вывод и хранение пользовательских данных; идентификация и аутентификация пользователей; процессы управления функциями безопасности; защита данных о частной жизни; реализация ограничений по использованию вычислительных ресурсов; обеспечение надежности маршрутизации и связи между функциями безопасности, а также некоторые другие классы требований.

Для каждой группы задач приводятся рекомендации по применению набора наиболее эффективных компонентов и процедур обеспечения безопасности ИС. Для достижения целей безопасности ИС с определенным уровнем гарантии качества защиты компоненты функциональных требований и способов их реализации рекомендуется объединять в унифицированные "Профили защиты многократного применения".

Эти "Профили" могут служить базой для дальнейшей конкретизации функциональных требований в "Техническом задании по безопасности" для определенного проекта ИС и помогают избегать грубых ошибок при формировании таких требований. Обобщения оценок спецификации требований "Задания по безопасности" должны давать заказчикам, разработчикам и испытателям проекта возможность делать общий вывод об уровне его соответствия функциональным требованиям и требованиям гарантированности защиты ИС. В обширных приложениях изложены рекомендации по реализации средств для достижения основных функциональных целей и требований безопасности.

Третья часть стандарта посвящена целям, методам и уровням обеспечения гарантий качества процессов реализации требований к функциям обеспечения безопасности ИС. Определены методы и средства, которые целесообразно использовать для корректной реализации жизненного цикла компонентов защиты и эффективного их применения. Изложены детальные рекомендации по обеспечению гарантии качества создания и применения систем безопасности: функционирования конфигурационного управления средствами защиты; процессов поддержки жизненного цикла, разработки, поставки и эксплуатации компонентов, реализующих защиту ИС; корректности документов и руководств; тестирования и оценки уязвимости ИС. Выделена парадигма сопровождения и поддержки сохранения гарантий безопасности ИС, а также представлены методы ее реализации.

В целом, стандарт представляет собой детальное комплексное руководство, охватывающее требования к функциям и методам гарантирования качества современных методов и средств обеспечения безопасности ИС, которое целесообразно использовать при практическом проектировании систем защиты, а также как хорошее учебное пособие в этой области.

"Общие критерии" ("ОК") определяют функциональные требования безопасности (Security Functional Requirements) и требования к адекватности реализации функций безопасности (Security Assurance Requirements). "Общие критерии" содержат два основных вида требований безопасности (рис. 6.5):

1. функциональные, соответствующие активному аспекту защиты, предъявляемые к функциям (сервисам) безопасности и реализующим их механизмам;

2. требования доверия, соответствующие пассивному аспекту; они предъявляются к технологии и процессу разработки и эксплуатации.

Критерии адекватности средств защиты


Рис. 6.5.  Критерии адекватности средств защиты

Требования безопасности формулируются, и их выполнение проверяется для определенного объекта оценки - аппаратно-программного продукта или ИС. Безопасность в "ОК" рассматривается не статично, а в соответствии с жизненным циклом объекта оценки. Кроме того, обследуемый объект предстает не изолированно, а в "среде безопасности", характеризующейся определенными уязвимостями и угрозами. "Общие критерии" целесообразно использовать для оценки уровня защищенности с точки зрения полноты реализованных в ней функций безопасности и надежности реализации этих функций. Хотя применимость "ОК" ограничивается механизмами безопасности программно-технического уровня, в них содержится определенный набор требований к механизмам безопасности организационного уровня и требований по физической защите, которые непосредственно связаны с описываемыми функциями безопасности.

Британский стандарт BS 7799 "Управление информационной безопасностью. Практические правила" почти без изменений отражен в международном стандарте ISO/IEC 17799:2000 "Практические правила управления информационной безопасностью" ("Code of practice for Information security management"). В этом стандарте обобщены правила по управлению ИБ, они могут быть использоваться в качестве критериев оценки механизмов безопасности организационного уровня, включая административные, процедурные и физические меры защиты. Практические правила разбиты на десять разделов.

  1. Политика безопасности.
  2. Организация защиты.
  3. Классификация ресурсов и их контроль.
  4. Безопасность персонала.
  5. Физическая безопасность.
  6. Администрирование компьютерных систем и сетей.
  7. Управление доступом.
  8. Разработка и сопровождение информационных систем.
  9. Планирование бесперебойной работы организации.
  10. Контроль выполнения требований политики безопасности.

В этих разделах содержится описание механизмов организационного уровня, реализуемых в настоящее время в государственных и коммерческих организациях во многих странах в виде соответствующих профилей защиты (рис. 6.6).Ключевые средства контроля (механизмы управления ИБ), предлагаемые в ISO 17799, считаются особенно важными.

Структура профиля защиты ИТ-продукта


Рис. 6.6.  Структура профиля защиты ИТ-продукта

При использовании некоторых из средств контроля, например шифрования, могут потребоваться советы специалистов по безопасности и оценка рисков. Для обеспечения защиты особенно ценных ресурсов или оказания противодействия особенно серьезным угрозам безопасности в ряде случаев могут потребоваться более сильные средства контроля, которые выходят за рамки ISO 17799.

Процедура аудита безопасности ИС по стандарту ISO 17799 включает в себя проверку наличия перечисленных ключевых средств контроля, оценку полноты и правильности их реализации, а также анализ их адекватности рискам, существующим в данной среде функционирования. Составной частью работ по аудиту также является анализ и управление рисками. Семейство стандартов ISO 27000 по обеспечению безопасности и аудиту защиты, по управлению защитой и рисками в настоящее время активно развивается (рис. 6.7).

Развитие семейства стандартов ISO 270...


Рис. 6.7.  Развитие семейства стандартов ISO 270...

На нижнем уровне разработаны в разных странах сотни отраслевых стандартов, нормативных документов и спецификаций по обеспечению ИБ, которые применяются национальными компаниями при разработке программных средств, ИС и обеспечении качества и безопасности их функционирования.

Технологии и инструменты обеспечения безопасности информации в системах и сетях

Основной особенностью любой сетевой структуры (системы) является то, что её компоненты распределены в пространстве и связь между ними осуществляется физически при помощи сетевых соединений (коаксиальный кабель, витая пара, оптоволокно, радиосвязь и т. п.) и программно — при помощи механизма сообщений. При этом все управляющие сообщения и данные, пересылаемые между объектами распределенной вычислительной системы, передаются по сетевым соединениям в виде пакетов обмена.

Сетевые системы характерны тем, что, наряду с обычными (локальными) непреднамеренными действиями и атаками, осуществляемыми в пределах одной компьютерной системы, к ним применим специфический вид атак, обусловленный распределенностью ресурсов и информации в пространстве. Это так называемые сетевые (или удалённые) атаки (Remote Network Attacks). Они характеризуются, во-первых, тем, что злоумышленник может находиться за тысячи километров от атакуемого объекта, и, во-вторых, тем, что нападению может подвергаться не конкретный компьютер, а информация, передающаяся по сетевым соединениям.

С развитием локальных и глобальных сетей именно удалённые атаки становятся лидирующими как по количеству попыток, так и по успешности их применения и, соответственно, обеспечение безопасности вычислительных и информационных систем и сетей с точки зрения противостояния удалённым атакам приобретает первостепенное значение.

Современные сервисы безопасности функционируют в распределенной среде, поэтому необходимо учитывать наличие как локальных, так и сетевых угроз. В качестве общих можно выделить следующие угрозы:

Ввиду особой опасности таких атак — особенно для государственных предприятий и органов власти — к системам защиты информации предъявляются повышенные требования. Например, для защиты конфиденциальной информации в органах исполнительной власти следует удовлетворить следующие требования [Петренко С., Курбатов В., 2005].

  1. Выбор конкретного способа подключения к сети Internet, в совокупности обеспечивающего межсетевое экранирование с целью управления доступом, фильтрации сетевых пакетов и трансляции сетевых адресов для скрытия структуры внутренней сети, проведение анализа защищенности узла Интернет, а также использование средств антивирусной защиты и централизованное управление средствами защиты должны производиться на основании рекомендаций документа Гостехкомиссии РФ СТР-К.
  2. Автоматизированные системы защиты (АСЗ) организации должны обеспечивать защиту информации от несанкционированного доступа (НСД) по классу "1Г" в соответствии с "Руководящим документом" Гостехкомиссии РФ "РД. Автоматизированные системы. Защита от НСД к информации. Классификация АСЗ и требования по защите информации".
  3. Средства вычислительной техники и программные средства АСЗ должны удовлетворять требованиям четвертого класса РД Гостехкомиссии России "РД. Средства вычислительной техники. Защита от НСД к информации. Показатели защищенности от НСД к информации".
  4. Программно-аппаратные средства межсетевого экранирования, применяемые для изоляции корпоративной сети от сетей общего пользования, должны удовлетворять требованиям "РД. Средства вычислительной техники. Межсетевые экраны. Защита от НСД к информации. Показатели защищенности от НСД к информации" по третьему классу защиты.
  5. Информационные системы должны удовлетворять требованиям ГОСТ ИСО/ МЭК 15408 по защищенности информационных систем в рамках заданных профилей защиты.
  6. Во исполнение приказа Госкомсвязи России от 25 декабря 1997 года №103 "Об организации работ по защите информации в отрасли связи и информатизации при использовании сети Internet" прямое подключение АРМ по управлению оборудованием сетей связи, мониторингу, обработки данных к сети Internet должно быть запрещено.
  7. Программно-аппаратные средства криптографической защиты конфиденциальной информации, в том числе используемые для создания виртуальных защищенных сетей (VPN), должны иметь сертификаты ФАПСИ РФ.
  8. Обязательным является использование средств ЭЦП для подтверждения подлинности документов.
  9. Для введения использования персональных цифровых сертификатов и поддержки инфраструктуры открытых ключей для использования средств ЭЦП и шифрования необходимо создать легитимный удостоверяющий центр (систему удостоверяющих центров).
  10. Политика информационной безопасности должна предусматривать обязательное включение в технические задания на создание коммуникационных и информационных систем требований информационной безопасности.
  11. Должен быть регламентирован порядок ввода в эксплуатацию новых информационных систем, их аттестации по требованиям информационной безопасности.

Для выполнения перечисленных требований и надлежащей защиты конфиденциальной информации в государственных структурах принято использовать сертифицированные средства. Например, средства защиты от несанкционированного доступа (НСД), межсетевые экраны и средства построения VPN, средства защиты информации от утечки и прочие. В частности, для защиты информации от НСД рекомендуется использовать программно- аппаратные средства семейств Secret Net ("Информзащита"), Dallas Lock ("Конфидент"), "Аккорд" (ОКБ САПР), электронные замки "Соболь" ("Информзащита"), USB-токены ("Аладдин") и прочие. Для защиты информации, передаваемой по открытым каналам связи рекомендованы программно-аппаратные межсетевые экраны с функциями организации VPN, например, Firewall-1/VPN-1 (Check Point), "Застава" ("Элвис+"), VipNet ("Инфотекс"), "Континент" ("Информзащита"), ФПСН-IP ("АМИКОН") и другие.

Средства защиты информации для коммерческих структур более многообразны, среди них можно выделить следующие средства:

На основании политики информационной безопасности и указанных средств защиты информации (СЗИ) разрабатываются конкретные процедуры защиты, включающие распределение ответственности за их выполнение. Процедуры безопасности также важны, как и политики безопасности. Если политики безопасности определяют ЧТО должно быть защищено, то процедуры определяют КАК защитить информационные ресурсы компании и КТО конкретно должен разрабатывать, внедрять данные процедуры и контролировать их исполнение.

Технологическая модель подсистемы информационной безопасности

Современные распределенные корпорации, имеющие подразделения на разных континентах, имеют сложную техническую, инженерную и информационную инфраструктуру. Создание информационной сети такой корпорации и её эффективная защита является чрезвычайно сложной концептуальной и технологической задачей.

Первоначальное решение, характерное для последнего десятилетия прошлого века, использовать для формирования сети телефонные линии быстро привело к нагромождению коммуникаций и к невозможности эффективной защиты. Последующее создание и сопровождение собственных корпоративных сетей для обеспечения информационного обмена данными на базе таких линий связи стало обходиться в миллионы долларов.

Быстрое развитие технологий Internet, образование, рост и развитие "всемирной паутины" позволили создать достаточно дешевые и надежные коммуникации. Однако техническая надежность связи вовсе не означала безопасности корпоративных сетей, имеющих выходы в Интернет. Общие принципы построения Интернет и его использование как общедоступной сети с публичными сервисами привели к тому, что стало очень трудно обеспечить надежную защиту от проникновения в корпоративные и государственные сети, построенные на базе протоколов TCP/IP и Internet -приложений — Web, FTP, e-mail и т.д.

Целевое назначение любой корпоративной информационной системы состоит в обеспечении пользователей необходимой информацией в режиме "On Line" и адекватном информационном сопровождении деятельности предприятия.

Базисом КИС является общесистемное программное обеспечение, которое включает операционную систему и программные оболочки, программы общего и прикладного назначения: автоматизированные рабочие места (АРМ) и Web-сервисы общего и специального назначения, СУБД и управление интегрированными вычислительными и мультимедийными приложениями, а также доступом в локальные и внешние сети (рис. 6.8).

Схема корпоративной информационной системы, включающей локальные сети и выход в Internet


Рис. 6.8.  Схема корпоративной информационной системы, включающей локальные сети и выход в Internet

Физически нижний уровень КИС базируется на серверах, рабочих станциях, персональных компьютерах различного назначения и коммуникационных устройствах, а также на программном обеспечении, реализующем работу перечисленных устройств. В связи с этим подсистема ИБ начинается с защиты именно этого программно-аппаратного оборудования. С этой целью можно использовать известные защитные средства операционных систем, антивирусные пакеты, средства и устройства аутентификации пользователя, средства криптографической защиты паролей и данных прикладного уровня. Все эти средства образуют базу для реализации первого уровня технологической модели подсистемы ИБ (рис. 6.9) [Соколов А. В., Шаньгин В. Ф. 2002].

Четырехуровневая технологическая модель подсистемы информационной безопасности


Рис. 6.9.  Четырехуровневая технологическая модель подсистемы информационной безопасности

Второй физический уровень КИС — рабочие станции, серверы и персональные компьютеры объединятся в локальные сети, которые организуют внутреннее Intranet-пространство предприятия и могут быть иметь выходы во внешнее Internet-пространство. В этом случае речь идет о средствах информационной защиты (СЗИ) второго уровня — уровня защиты локальных сетей, который обычно включает:

Следующий уровень реализации КИС — объединение нескольких локальных сетей географически распределенного предприятия в общую корпоративную Intranet-сеть через открытую сеть на базе современных технологий поддержки и сопровождения таких сетей (Quality of Service — QoS) с использованием открытой среды Internet в качестве коммутационной среды.

В этом случае на третьем уровне защиты КИС используются технологии защищенных виртуальных сетей (Virtual Private Networks — VPN). VPN-технологии часто интегрируются со средствами первого и второго уровней. Такой защищенный VPN-канал может простираться не только до маршрутизаторов доступа и пограничных Fairwall'лов, но и до серверов и рабочих станций локальной сети.

Четвертый уровень защиты КИС — организация защищенного межкорпоративного обмена в среде электронного бизнеса (eBusiness). Методологической и технологической основой такой защиты являются методы и технологии управления публичными ключами и сертификатами криптографической защиты (Public Key Infrastructure — PKI). Суть этих технологий состоит в реализации двух глобальных функций: генерации и корректном распространении ключей и сертификатов и отслеживании их жизненного цикла. Базой для реализации средств защиты будут электронная цифровая подпись (Electronic Digital Signature — EDS) и VPN-технологии.

Отметим, что два нижних уровня защиты являются достаточно традиционными, так как они предназначены для обеспечения безопасности конкретной физически реализованной КИС. Верхние два уровня относятся к обеспечению безопасности передачи данных и электронного бизнеса, который осуществляется уже не в физическом, а в виртуальном пространстве, при этом VPN-технологии обеспечивают защищенный обмен данными в межкорпоративном пространстве, а PKI-технологии обеспечивают VPN-устройства ключами и сертификатами. В настоящее время на рынке имеется достаточное число технических и программных решений для защиты данных, информации, систем и сетей. Ниже рассмотрены некоторые базовые технологии на примере криптографической защиты данных, технологий межсетевых экранов, защищенных VPN-каналов связи, антивирусных и биометрических методов.

Технологии криптографической защиты информации

Криптография - это совокупность технических, математических, алгоритмических и программных методов преобразования данных (шифрование данных), которая делает их бесполезными для любого пользователя, у которого нет ключа для расшифровки. Криптографические преобразования обеспечивают решение следующих базовых задач защиты - конфиденциальности (невозможности прочитать данные и извлечь полезную информацию) и целостности (невозможность модифицировать данные для изменения смысла или внесения ложной информации).

Технологии криптографии позволяют реализовать следующие процессы информационной защиты:

В соответствии с политиками безопасности используемые в компании технологии криптографии и специализированное программно-аппаратное обеспечение для защиты данных и документов, шифрования файлов и дисков реализуют следующие аспекты информационной защиты:

Общая схема простой криптосистемы показана на рис. 6.10, а на рис. 6.11 приведена схема симметричной криптосистемы с закрытым ключом [Соколов А. В., Шаньгин В. Ф., 2002].

Отправитель сообщения генерирует открытый текст сообщения для передачи по незащищенному каналу связи. Для того чтобы передаваемый текст невозможно было прочитать, отправитель преобразует (шифрует) его с помощью алгоритма обратимого преобразования , формируя зашифрованный текст (криптограмму) .

Адресат, получив криптограмму, применяет известное ему обратное преобразование и получает исходный открытый текст . Множество преобразований образуют семейства криптоалгоритмов . Параметр , с помощью которого производится преобразование текста сообщения, называется ключом.

Общая схема криптосистемы


Рис. 6.10.  Общая схема криптосистемы

Такой ключ, по сути, является уникальным параметром — только его владелец (группа владельцев) может использовать этот ключ. Таким образом, криптографическая система по определению — это однопараметрическое семейство обратимых преобразований из пространства сообщений открытого текста в пространство зашифрованных текстов. Параметр шифрования (ключ) выбирается из конечного множества {К}, называемого пространством ключей.

Существует два класса криптосистем — симметричные (с одним ключом) и асимметричные (с двумя ключами). Симметричные криптосистемы (рис. 6.11) используют один и тот же ключ в процедурах шифрования и расшифровки текста — и поэтому такие системы называются системами с секретным закрытым ключом.

Ключ должен быть известен только тем, кто занимается отправкой и получением сообщений. Таким образом, задача обеспечения конфиденциальности сводится к обеспечению конфиденциальности ключа. Передача такого ключа от адресата пользователю может быть выполнена только по защищенному каналу связи (рис. 6.11, пунктирная линия), что является существенным недостатком симметричной системы шифрования.

Схема симметричной криптосистемы с закрытым ключом


Рис. 6.11.  Схема симметричной криптосистемы с закрытым ключом

Такой вид шифрования наиболее часто используется в закрытых локальных сетях, в том числе входящих в КИС, для предотвращения НСД в отсутствие владельца ресурса. Таким способом можно шифровать как отдельные тексты и файлы, так и логические и физические диски.

Схема асимметричной криптосистемы с открытым ключом


Рис. 6.12.  Схема асимметричной криптосистемы с открытым ключом

Асимметричные криптосистемы используют различные ключи (рис. 6.12):

Открытый и секретный ключи и генерируются попарно, при этом ключ остается у его владельца и должен быть надежно защищен от НСД. Копии ключа распространяются среди пользователей сети, с которыми обменивается информацией обладатель секретного ключа . Таким образом, в асимметричной криптосистеме ключ свободно передается по открытым каналам связи, а секретный ключ хранится на месте его генерации.

Система защиты информации называется криптостойкой, если в результате предпринятой злоумышленником атаки на зашифрованное послание невозможно расшифровать перехваченный зашифрованный текст для получения открытого текста или зашифровать текст злоумышленника для передачи правдоподобного зашифрованного текста с искаженными данными.

В настоящее время используется следующий подход реализации криптозащиты — криптосистема, реализующая семейство криптографических преобразований , является открытой системой. Это очень важный принцип криптозащиты, так как защищенность системы не должна зависеть от того, чего нельзя было бы быстро перенастроить в случае необходимости, если произошла утечка секретной информации. Изменение программно-аппаратой части системы защиты информации требует значительных финансовых и временных затрат, а изменение ключей является несложным делом. Именно поэтому стойкость криптосистемы определяется, в основном, секретностью ключа .

Формальные математические методы криптографии были разработаны Клодом Шенноном ("Математическая теория криптографии", 1945 г.). Он доказал теорему о существовании и единственности абсолютно стойкого шифра — это такая система шифрования, когда текст однократно зашифровывается с помощью случайного открытого ключа такой же длины.

В 1976 году американские математики У.Диффи и М.Хеллман обосновали методологию асимметричного шифрования с применением открытой однонаправленной функции (это такая функция, когда по её значению нельзя восстановить значение аргумента) и открытой однонаправленной функции с секретом.

В 90-е годы XX века профессор Массачусетского технологического института (MIT, USA) Рональд Ривест разработал метод шифрования с помощью особого класса функций — хэш-функций (Hash Function). Это был алгоритм шифрования MD6 хэширования переменной разрядности. Хэш-функция (дайджест-функция) — это отображение, на вход которого подается сообщение переменной длины М, а выходом является строка фиксированной длины — дайджест сообщения (рис. 6.13).

Однонаправленной хэш-функции с параметром-ключом


Рис. 6.13.  Однонаправленной хэш-функции с параметром-ключом

Криптостойкость такого метода шифрования состоит в невозможности подобрать документ , который обладал бы требуемым значением хэш-функции. Параметры вычисления хэш-функции являются семейством ключей . В настоящее время на этих принципах строятся алгоритмы формирования электронной цифровой подписи (ЭЦП).

Наиболее известными симметричными алгоритмами шифрования в настоящее время являются DES (Data Encryption Standard), IDEA (International Data Encryption Algorithm), RC2, RC5, CAST, Blowfish. Асимметричные алгоритмы — RSA (R.Rivest, A.Shamir, L.Adleman), алгоритм Эль Гамаля (ElGamal), криптосистема ЕСС на эллиптических кривых, алгоритм открытого распределения ключей Диффи-Хеллмана.

Алгоритмы, основанные на применении хэш-функций — MD4 (Message Digest 4), MD5 (Message Digest 5), SHA (Secure Hash Algorithm) [Соколов А.В., Шаньгин В.Ф., 2002].

Наиболее известным программным продуктом, распространяемым свободно, является пакет PGP (Pretty Good Privacy). Пакет разработан Филом Циммерманом (Phil Zimmerman) в 1995 году, который использовал упомянутые алгоритмы RSA, IDEA, и MD5. PGP состоит из трёх частей — алгоритма IDEA, сигнатуры и цифровой подписи. PGP использует три ключа — открытый ключ адресата, секретный ключ владельца и сеансовый ключ, генерируемый при помощи RSA и открытого ключа случайным образом при шифровании сообщения (рис. 6.14). Информацию об этом продукте можно получить по адресу: http://www.mit.edu/network/pgp-form.html.

Схема формирования защищенного сообщения с помощью пакета PGP


Рис. 6.14.  Схема формирования защищенного сообщения с помощью пакета PGP

Выбор алгоритма шифрования, кроме обязательного DES, зависит от разработчика. Это создает дополнительное преимущество, так как злоумышленник должен определить, какой шифр следует вскрыть. Если добавить необходимость подбора ключей, то шансы расшифровки существенно уменьшаются.

Примером простого и эффективного протокола управления криптографическими ключами в сетях является протокол SKIP (Simple Key management for Internet Protocol), представленный в 1994 году компанией Sun Microsystems (США). Это открытая спецификация, её свободно можно использовать для разработки средств защиты информации в Internet-сетях. Ряд компаний успешно применяет этот протокол для коммерческих разработок СЗИ: Swiss Institute of Technology (Швейцария), Check Point Software Inc. (США, Израиль), Toshiba (Япония), ЭЛВИС+ (Россия), VPNet (США).

Схема формирования ЭЦП


Рис. 6.15.  Схема формирования ЭЦП

В России установлен единый алгоритм криптографических преобразований данных для систем обработки и передачи данных в сетях, который установлен стандартом ГОСТ 28147-89. Другой российский стандарт — ГОСТ Р 34.11-94 — определяет алгоритм и процедуру вычисления хэш-функций для любых последовательностей двоичных символов, используемых в криптографических методах защиты информации. Отечественный стандарт ГОСТ Р 34.10-94 является стандартом, определяющим алгоритм формирования ЭЦП (рис. 6.15).

Технологии нижнего уровня защиты информации в локальных сетях: межсетевые экраны

Межсетевой экран (брандмауэр, Firewall) — программно-аппаратная система межсетевой защиты, которая отделяет одну часть сети от другой и реализует набор правил для прохождения данных из одной части в другую. Границей является раздел между локальной корпоративной сетью и внешними Internet-сетями или различными частями локальной распределенной сети. Экран фильтрует текущий трафик, пропуская одни пакеты информации и отсеивая другие.

Межсетевой экран (МЭ) является одним из основных компонентов защиты сетей. Наряду с Internet-протоколом межсетевого обмена (Internet Security Protocol — IPSec) МЭ является одним из важнейших средств защиты, осуществляя надежную аутентификацию пользователей и защиту от НСД. Отметим, что большая часть проблем с информационной безопасностью сетей связана с "прародительской" зависимостью коммуникационных решений от ОС UNIX — особенности открытой платформы и среды программирования UNIX сказались на реализации протоколов обмена данными и политики информационной безопасности. Вследствие этого ряд Internet-служб и совокупность сетевых протоколов (Transmission Control Protocol/Internet Protocol — TCP/IP) имеет "бреши" в защите [Левин М., 2001].

К числу таких служб и протоколов относятся:

Настройки МЭ, т.е. решение пропускать или отсеивать пакеты информации, зависят от топологии распределенной сети и принятой политики информационной безопасности. В связи с этим политика реализации межсетевых экранов определяет правила доступа к ресурсам внутренней сети. Эти правила базируются на двух общих принципах — запрещать всё, что не разрешено в явной форме, и разрешать всё, что не запрещено в явной форме. Использование первого принципа дает меньше возможностей пользователям и охватывает жёстко очерченную область сетевого взаимодействия. Политика, основанная на втором принципе, является более мягкой, но во многих случаях она менее желательна, так как она предоставляет пользователям больше возможностей "обойти" МЭ и использовать запрещенные сервисы через нестандартные порты (User Data Protocol — UDP), которые не запрещены политикой безопасности.

Функциональные возможности МЭ охватывают следующие разделы реализации информационной безопасности:

Программно-аппаратные компоненты МЭ можно отнести к одной из трёх категорий: фильтрующие маршрутизаторы, шлюзы сеансового уровня и шлюзы уровня приложений. Эти компоненты МЭ — каждый отдельно и в различных комбинациях — отражают базовые возможности МЭ и отличают их один от другого.

Фильтрующий маршрутизатор (Filter Router — FR) фильтрует IP-пакеты по параметрам полей заголовка пакета: IP-адрес отправителя, IP-адрес адресата, TCP/UDP-порт отправителя и TCP/UDP-порт адресата. Фильтрация направлена на безусловное блокирование соединений с определенными хостами и/или портами — в этом случае реализуется политика первого типа.

Формирование правил фильтрации является достаточно сложным делом, к тому же обычно отсутствуют стандартизированные средства тестирования правил и корректности их исполнения. Возможности FR по реализации эффективной защиты ограничены, так как на сетевом уровне эталонной модели OSI обычно он проверяет только IP-заголовки пакетов. К достоинствам применения FR можно отнести невысокую стоимость, гибкость формирования правил, незначительную задержку при передаче пакетов. Недостатки FR достаточно серьезны, о них следует сказать более подробно:

Шлюз сеансового уровня (Session Level Gateway — SLG) —активный транслятор TCP соединения. Шлюз принимает запрос авторизованного клиента на предоставление услуг, проверяет допустимость запрошенного сеанса (Handshaking), устанавливает нужное соединение с адресом назначения внешней сети и формирует статистику по данному сеансу связи. После установления факта, что доверенный клиент и внешний хост являются "законными" (авторизованными) участниками сеанса, шлюз транслирует пакеты в обоих направлениях без фильтрации. При этом часто пункт назначения оговаривается заранее, а источников информации может быть много (соединение "один-ко-многим") — это, например, типичный случай использования внешнего Web-ресурса.

Используя различные порты, можно создавать различные конфигурации соединений, обслуживая одновременно всех пользователей, имеющих право на доступ к ресурсам сети. Существенным недостатком SLG является то, что после установления связи пакеты фильтруются только на сеансовом уровне модели OSI без проверки их содержимого на уровне прикладных программ. Авторизованный злоумышленник может спокойно транслировать вредоносные программы через такой шлюз. Таким образом, реализация защиты осуществляется, в основном, на уровне квитирования (Handshaking).

Шлюз уровня приложений (Application Layer Gateway — ALG). Для компенсации недостатков FR и SLG шлюзов в межсетевые экраны встраивают прикладные программы для фильтрации пакетов при соединениях с такими сервисами, как Telnet и FTP и пр. Эти приложения называются Proxy-службами, а устройство (хост), на котором работает служба, называется шлюзом уровня приложений. Шлюз исключает прямое взаимодействие между авторизованным пользователем и внешним хостом. Зафиксировав сетевой сеанс, шлюз останавливает его и вызывает уполномоченное приложение для реализации запрашиваемой услуги — Telnet, FTP, WWW или E-mail. Внешний пользователь, который хочет получить услугу соединения в сети, соединяется вначале с ALG, а затем, пройдя предусмотренные политикой безопасности процедуры, получает доступ к нужному внутреннему узлу (хосту). Отметим явные преимущества такой технологии:

Как показывает практика, защита на уровне приложений позволяет дополнительно осуществлять другие проверки в системе защиты информации — а это снижает опасность "взлома" системы, имеющей "прорехи" в системе безопасности.

Межсетевые экраны можно разделить по следующим основным признакам:

На рис. 6.16 показан вариант защиты локальной сети на базе программно-аппаратного решения — межсетевого экрана Cisko 2610 & PIX Firewall 520 компании Cisco Systems [Соколов А. В., Шаньгин В. Ф., 2002]. Отличительной особенностью этой модели является специальная ОС реального времени, а высокая производительность реализуется на базе алгоритма адаптивной безопасности (Adaptive Security Algorithm — ASA).

Использование комплекса "маршрутизатор-файервол" в системах защиты информации при подключении к Internet


Рис. 6.16.  Использование комплекса "маршрутизатор-файервол" в системах защиты информации при подключении к Internet

Приведенное решение имеет несомненные достоинства: высокая производительность и пропускная способность до 4 Гб/сек; возможность поддержки до 256 тысяч одновременных сессий; объединение преимуществ пакетного и прикладного шлюзов, простота и надежность в установке и эксплуатации, возможность сертификации в Государственной технической комиссии РФ.

В заключение отметим, что межсетевые экраны, естественно, не решают всех вопросов информационной безопасности распределенных КИС и локальных сетей — существует ряд ограничений на их применение и ряд угроз, от которых МЭ не могут защитить. Отсюда следует, что технологии МЭ следует применять комплексно — с другими технологиями и средствами защиты.

Концепция защищенных виртуальных частных сетей

При выходе локальной сети в открытое Internet-пространство возникают угрозы двух основных типов: несанкционированный доступ (НСД) к данным в процессе их передачи по открытой сети и НСД к внутренним ресурсам КИС. Информационная защита при передаче данных по открытым каналам реализуется следующими мерами:

Организация защиты с использованием технологии виртуальных частных сетей (Virtual Private Network — VPN) подразумевает формирование защищенного "виртуального туннеля" между узлами открытой сети, доступ в который невозможен потенциальному злоумышленнику. Преимущества этой технологии очевидны: аппаратная реализация довольно проста, нет необходимости создавать или арендовать дорогие выделенные физические сети, можно использовать открытый дешевый Internet, скорость передачи данных по туннелю такая же, как по выделенному каналу.

В настоящее время существует четыре вида архитектуры организации защиты информации на базе применения технологии VPN [Соколов А. В., Шаньгин В. Ф., 2002].

Локальная сеть VPN (Local Area Network-VPN). Обеспечивает защиту потоков данных и информации от НСД внутри сети компании, а также информационную безопасность на уровне разграничения доступа, системных и персональных паролей, безопасности функционирования ОС, ведение журнала коллизий, шифрование конфиденциальной информации.

Внутрикорпоративная сеть VPN (Intranet-VPN). Обеспечивает безопасные соединения между внутренними подразделениями распределенной компании.

Для такой сети подразумевается:

Сети VPN с удаленным доступом (Internet-VPN). Обеспечивает защищенный удаленный доступ удаленных подразделений распределённой компании и мобильных сотрудников и отделов через открытое пространство Internet (рис. 6.17).

Такая сеть организует:

Туннельная схема организации VPN сети


Рис. 6.17.  Туннельная схема организации VPN сети

Межкорпоративная сеть VPN (Extranet-VPN). Обеспечивает эффективный защищённый обмен информацией с поставщиками, партнёрами, филиалами корпорации в других странах. Такая сеть предусматривает использование стандартизированных и надёжных VPN-продуктов, работающих в открытых гетерогенных средах и обеспечивающих максимальную защищенность конфиденциального трафика, включающего аудио и видео потоки информации — конфиденциальные телефонные переговоры и телеконференции с клиентами.

Можно выделить два основных способа технической реализации виртуальных туннелей:

Схема пакета, подготовленного к отправке по туннелю


Рис. 6.18.  Схема пакета, подготовленного к отправке по туннелю

VPN-туннель обладает всеми свойствами защищенной выделенной линии, проходящей через открытое пространство Internet. Особенность технологии туннелирования состоит в том, что она позволяет зашифровать не только поле данных, а весь исходный пакет, включая заголовки. Это важная деталь, так как из заголовка исходного пакета злоумышленник может извлечь данные о внутренней структуре сети — например, информацию о количестве локальных сетей и узлов и их IP-адресах.

Зашифрованный пакет, называемый SKIP-пакетом, инкапсулируется в другой пакет с открытым заголовком, который транспортируется по соответствующему туннелю (рис. 6.19).

При достижении конечной точки туннеля из внешнего пакета извлекается внутренний, расшифровывается, и его заголовок используется для дальнейшей передачи во внутренней сети или подключенному к локальной сети мобильному пользователю. Туннелирование применяется не только для обеспечения конфиденциальности внутреннего пакета данных, но и для его целостности и аутентичности, механизм туннелирования часто применяется в различных протоколах формирования защищенного канала связи. Технология позволяет организовать передачу пакетов одного протокола в логической среде, использующей другой протокол.

Таким образом, можно реализовать взаимодействие нескольких разнотипных сетей, преодолевая несоответствие внешних протоколов и схем адресации.

Структура SKIP-пакета


Рис. 6.19.  Структура SKIP-пакета

Средства построения защищенной VPN достаточно разнообразны — они могут включать маршрутизаторы с механизмом фильтрации пакетов (Filtering Router), многофункциональные межсетевые экраны (Multifunction Firewall), промежуточные устройства доступа в сеть (Proxy Server), программно-аппаратные шифраторы (Firmware Cryptograph). По технической реализации можно выделить следующие основные виды средств формирования VPN:

Туннели VPN создаются для различных типов конечных пользователей: это может быть локальная сеть (Local Area Network — LAN) со шлюзом безопасности (Security Gateway) или отдельные компьютеры удаленных или мобильных пользователей с сетевым программным обеспечением для шифрования и аутентификации трафика — клиенты VPN (рис. 6.17). Через шлюз безопасности проходит весь трафик для внутренней корпоративной сети. Адрес шлюза VPN указывается как внешний адрес входящего туннелируемого пакета, а расшифрованный внутренний адрес пакета является адресом конкретного хоста за шлюзом.

Наиболее простым и относительно недорогим способом организации VPN-канала является схема, в соответствии с которой защищенный туннель прокладывается только в открытой сети для транспортировки зашифрованных пакетов. В качестве конечных точек туннеля выступают провайдеры Internet-сети или пограничные межсетевые экраны (маршрутизаторы) локальной сети. Защищенный туннель формируется компонентами виртуальной сети, функционирующим на узлах, между которыми он создается. В настоящее время активно функционирует рынок VPN-средств — приведем некоторые примеры популярных и широко используемых решений для каждого класса продуктов.

VPN на базе сетевых операционных систем. Для формирования виртуальных защищённых туннелей в IP сетях сетевая операционная система Windows NT использует протокол PPTP (Point-to-Point Transfer Protocol). Туннелирование информационных пакетов производится инкапсулированием и шифрованием (криптоалгоритм RSA RC4) стандартных блоков данных фиксированного формата (РРР Data Frames) в IP-дейтаграммы, которые и передаются в открытых IP-сетях. Данное решение является недорогим, и его можно эффективно использовать для формирования VPN-каналов внутри локальных сетей, домена Windows NT или для построения Internet- и Extranet- VPN для небольших компаний малого и среднего бизнеса для защиты не критичных приложений.

VPN на базе маршрутизаторов. В России лидером на рынке VPN-продуктов является компания Cisko Systems. Построение каналов VPN на базе маршрутизаторов Cisko осуществляется средствами ОС версии Cisko IOS 12.х. Для организации туннеля маршрутизаторы Cisko используют протокол L2TP канального уровня эталонной модели OSI, разработанного на базе "фирменных" протоколов Cisko L2F и Microsoft PPTP, и протокол сетевого уровня IPSec, созданного ассоциацией "Проблемная группа проектирования Internet (Internet Engineering Task Force — IETF). Эффективно применяется Cisko VPN Client, который предназначен для создания защищенных соединений Point-to Point между удаленными рабочими станциями и маршрутизаторами Cisko — это позволяет построит практически все виды VPN-соединений в сетях.

VPN на базе межсетевых экранов. Эта технология считается наиболее сбалансированной и оптимальной с точки обеспечения комплексной безопасности КИС и её защиты от атак из внешней открытой сети. В России нашел широкое применение программный продукт Check Point Firewall-1/VPN-1 компании Check Point Software Technologies. Это решение позволяет построить глубоко комплексную эшелонированную систему защиты КИС.

В состав продукта входят: Check Point Firewall-1, набор средств для формирования корпоративной виртуальной частной сети Check Point VPN-1, средства обнаружения атак и вторжений Real Secure, средства управления полосой пропускания информационных пакетов Flood Gate, средства VPN-1 Secure Remote, VPN-1 Appliance и VPN-1 Secure Client для построения Localnet/Intranet/Internet/Extranet VPN-каналов. Весь набор продуктов Check Point VPN-1 построен на базе открытых стандартов IPSec, имеет развитую систему идентификации и аутентификации пользователей, взаимодействует с внешней системой распределения открытых ключей PKI, поддерживает цетрализованную систему управления и аудита.

На российском рынке можно указать два продукта, получивших достаточно широкую известность — это криптографический комплекс "Шифратор IP пакетов" производства объединения МО ПН ИЭИ (http://www.security.ru) и ряд программных продуктов ЗАСТАВА компании ЭЛВИС+ (http://www.elvis.ru). Самым быстрорастущим сегментом рынка систем информационной безопасности по исследованиям IDC, Price Waterhouse Cooper и Gartner Group являются системы блокировки корпоративных каналов связи. Быстрее всего растут продажи систем защиты от утечек внутренней информации (Intrusion Detection and Prevention — IDP), которые позволяют контролировать трафик электронной почты и доступ к внешним Internet-ресурсам.

Антивирусная защита

История появления вирусописательства чрезвычайно интересна — она ещё ждёт своего дотошного исследователя! До сих пор нет единого мнения относительно момента, который можно было бы считать официальным днём появления вируса, как не существовало и критериев, под которые можно было бы подвести то или иное ПО и отличить исследовательские эксперименты от целенаправленно написанной программы с вредоносными функциями.

В 1949 году Джон фон Нейман (John von Naumann), выдающийся американский математик венгерского происхождения, сделавший важный вклад в квантовую физику, квантовую логику, функциональный анализ, теорию множеств, информатику, экономику и другие отрасли науки, разработал математическую теорию создания самовоспроизводящихся программ. Это была первая попытка создать теорию такого явления, но она не вызвала большого интереса у научного сообщества, так не имела видимого прикладного значения.

Нет согласия и по поводу происхождения названия "компьютерный вирус". По одной из версий это случилось 10 ноября 1983 года, когда аспирант Университета Южной Калифорнии (University of Southern California) Фред Коэн (Fred Cohen) во время семинара по безопасности в Лехайском университете (Пенсильвания, США) продемонстрировал на системе VAX 11/750 программу, способную внедряться в другие программные объекты. Эту программу можно с полным правом считать одним из первых прототипов компьютерного вируса.

Коэн внедрил написанный им код в одну из Unix-команд, и в течение пяти минут после запуска её на вычислительной машине получил контроль над системой. В четырёх других демонстрациях полного доступа удавалось добиться за полчаса, оставив поверженными все существовавшие в то время защитные механизмы.

Существует версия, что термином "вирус" назвал копирующую саму себя программу научный руководитель Фреда, один из создателей криптографического алгоритма RSA Леонард Эдлеман (Leonard Adleman).

Годом позже, на 7-й конференции по безопасности информации, Ф.Коэн дает научное определение термину "компьютерный вирус", как программе, способной "заражать" другие программы при помощи их модификации с целью внедрения своих копий и выполнения заданных действий. Отметим, что Ф.Коэн определённо не был новатором в этой области. Теоретические рассуждения о распространяющихся копированием с компьютера на компьютер программах и практическая реализация успешно осуществлялись и раньше. Однако именно презентация Ф.Коэна заставила специалистов серьёзно заговорить о потенциальном ущербе от преднамеренных атак. Всего через пятнадцать лет распространение вредоносного программного обеспечения приобрело угрожающие масштабы, радикально снизить которые не представляется возможным.

В некотором смысле опередил Ф. Коэна 15-летний школьник из Пенсильвании Рик Скрента (Rich Skrenta). Его излюбленным занятием было подшучивание над товарищами путём модификаций кода игр для Apple II, которые приводили к внезапному выключению компьютеров или выполняли другие действия. В 1982 году он написал Elk Cloner — самовоспроизводящийся загрузочный вирус, инфицировавший Apple II через гибкий магнитный диск. Во время каждой 50-й перезагрузки ПК появлялось сообщение со словами: "Он завладеет вашими дисками, он завладеет вашими чипами. Да, это Cloner! Он прилипнет к вам как клей, он внедрится в память. Cloner приветствует вас!"

Программа Р.Скрента не вышла далеко за пределы круга его друзей. Лавры достались "шедевру" программистской мысли, появившемуся несколькими годами позже. Программу Brain ("Мозг") создали в 1988 году двое братьев — выходцев из Пакистана, которым приписывается инфицирование ПК через созданные ими нелегальные копии программы для мониторинга работы сердца. Вирус содержал уведомление об авторском праве с именами и телефонами братьев, поэтому пользователи заражённых машин могли обратиться к напрямую к вирусописателям за "вакциной". За первой версией Brain последовало множество модификаций, преследовавших сугубо коммерческий интерес.

В 1988 году аспирант Корнельского университета (Cornell University) Роберт Теппен Моррис младший (Robert Tappan Morris Jr.), приходившийся сыном главному научному сотруднику Агентства национальной безопасности США (National Security Agency), выпустил в свет первый широко распространившийся компьютерный червь, хотя экспериментальные работы в этой области проводились с конца 1970-х годов. Этот тип программ чаще всего не производит никаких деструктивных манипуляций с файлами пользователя и ставит целью как можно более быстрое и широкое распространение, снижая эффективность работы сетей.

По некоторым оценкам, от 5% до 10% подключённых в то время к Сети машин, по большей части принадлежавших университетам и исследовательским организациям, были атакованы им. Червь использовал уязвимости нескольких программах, в том числе Sendmail. Р.Т.Моррис стал первым человеком, осуждённым по обвинению в преступлениях в компьютерной сфере, и получил 3 года условно. Однако это не помешало ему впоследствии стать профессором Массачусетского технологического института (MIT).

Следующий большой шаг вредоносное ПО совершило в 90-х годах с ростом спроса на персональные компьютеры и количества пользователей электронной почты. Электронные коммуникации предоставили гораздо более эффективный путь инфицирования ПК, чем через носители информации. Образцом скорости распростанения стал вирус Melissa в 1999 году, внедрившийся в 250 тыс. систем. Однако он был безвреден, за исключением того, что каждый раз при совпадении времени и даты — например, 5:20 и 20 мая — на экране возникала цитата из The Simpsons.

Годом позже появился Love Bug, известный также как LoveLetter. За короткое время вирус облетел весь мир! Он был написан филиппинским студентом и приходил в электронном сообщении с темой "I Love You". Как только пользователь пытался открыть вложение, вирус через Microsoft Outlook пересылал себя по всем адресам в списке контактов. Затем скачивал троянскую программу для сбора интересующей филиппинца информации. LoveLetter атаковал около 55 миллионов ПК и заразил от 2,5 до 3 миллионов. Размер причинённого им ущерба оценивался в 10 миллиардов, но студент избежал наказания, поскольку Филиппины не имели в то время законодательной базы для борьбы с киберпреступниками [Борн Денис, http://www.wired.com].

Лавинообразное распространением вирусов стало большой проблемой для большинства компаний и государственных учреждений. В настоящее время известно более миллиона компьютерных вирусов и каждый месяц появляется более 3000 новых разновидностей ["Энциклопедия Вирусов", http://www.viruslist.com/ru/viruses/encyclopedia.].

Компьютерный вирус — это специально написанная программа, которая может "приписывать" себя к другим программам, т.е. "заражать их", с целью выполнения различных нежелательных действий на компьютере, в вычислительной или информационной системе и в сети.

Когда такая программа начинает работу, то сначала, как правило, управление получает вирус. Вирус может действовать самостоятельно, выполняя определенные вредоносные действия (изменяет файлы или таблицу размещения файлов на диске, засоряет оперативную память, изменяет адресацию обращений к внешним устройствам, генерирует вредоносное приложение, крадет пароли и данные и т.д.), или "заражает" другие программы. Зараженные программы могут быть перенесены на другой компьютер с помощью дискет или локальной сети.

Формы организации вирусных атак весьма разнообразны, но в целом практически их можно "разбросать" по следующим категориям:

К вредоносному программному обеспечению относятся сетевые черви, классические файловые вирусы, троянские программы, хакерские утилиты и прочие программы, наносящие заведомый вред компьютеру, на котором они запускаются на выполнение, или другим компьютерам в сети.

Сетевые черви

Основным признаком, по которому типы червей различаются между собой, является способ распространения червя — каким способом он передает свою копию на удаленные компьютеры. Другими признаками различия КЧ между собой являются способы запуска копии червя на заражаемом компьютере, методы внедрения в систему, а также полиморфизм, "стелс" и прочие характеристики, присущие и другим типам вредоносного программного обеспечения (вирусам и троянским программам).

Пример — E-mail-Worm — почтовые черви. К данной категории червей относятся те из них, которые для своего распространения используют электронную почту. При этом червь отсылает либо свою копию в виде вложения в электронное письмо, либо ссылку на свой файл, расположенный на каком-либо сетевом ресурсе (например, URL на зараженный файл, расположенный на взломанном или хакерском веб-сайте). В первом случае код червя активизируется при открытии (запуске) зараженного вложения, во втором — при открытии ссылки на зараженный файл. В обоих случаях эффект одинаков — активизируется код червя.

Для отправки зараженных сообщений почтовые черви используют различные способы. Наиболее распространены:

Различные методы используются почтовыми червями для поиска почтовых адресов, на которые будут рассылаться зараженные письма. Почтовые черви:

Многие черви используют сразу несколько из перечисленных методов. Встречаются также и другие способы поиска адресов электронной почты. Другие виды червей: IM-Worm — черви, использующие Internet-пейджеры, IRC-Worm — черви в IRC-каналах, Net-Worm — прочие сетевые черви.

Классические компьютерные вирусы

К данной категории относятся программы, распространяющие свои копии по ресурсам локального компьютера с целью: последующего запуска своего кода при каких-либо действиях пользователя или дальнейшего внедрения в другие ресурсы компьютера.

В отличие от червей, вирусы не используют сетевых сервисов для проникновения на другие компьютеры. Копия вируса попадает на удалённые компьютеры только в том случае, если зараженный объект по каким-либо не зависящим от функционала вируса причинам оказывается активизированным на другом компьютере, например:

Некоторые вирусы содержат в себе свойства других разновидностей вредоносного программного обеспечения, например бэкдор-процедуру или троянскую компоненту уничтожения информации на диске.

Многие табличные и графические редакторы, системы проектирования, текстовые процессоры имеют свои макроязыки (макросы) для автоматизации выполнения повторяющихся действий. Эти макроязыки часто имеют сложную структуру и развитый набор команд. Макро-вирусы являются программами на макроязыках, встроенных в такие системы обработки данных. Для своего размножения вирусы этого класса используют возможности макроязыков и при их помощи переносят себя из одного зараженного файла (документа или таблицы) в другие.

Скрипт-вирусы

Следует отметить также скрипт-вирусы, являющиеся подгруппой файловых вирусов. Данные вирусы, написаны на различных скрипт-языках (VBS, JS, BAT, PHP и т.д.). Они либо заражают другие скрипт-программы (командные и служебные файлы MS Windows или Linux), либо являются частями многокомпонентных вирусов. Также, данные вирусы могут заражать файлы других форматов (например, HTML), если в них возможно выполнение скриптов.

Троянские программы

В данную категорию входят программы, осуществляющие различные несанкционированные пользователем действия: сбор информации и её передачу злоумышленнику, ее разрушение или злонамеренную модификацию, нарушение работоспособности компьютера, использование ресурсов компьютера в неблаговидных целях. Отдельные категории троянских программ наносят ущерб удаленным компьютерам и сетям, не нарушая работоспособность зараженного компьютера (например, троянские программы, разработанные для массированных DoS-атак на удалённые ресурсы сети).

Троянские программы многообразны и различаются между собой по тем действиям, которые они производят на зараженном компьютере:

Хакерские утилиты и прочие вредоносные программы

К данной категории относятся:

К прочим вредоносным относятся разнообразные программы, которые не представляют угрозы непосредственно компьютеру, на котором исполняются, а разработаны для создания других вирусов или троянских программ, организации DoS-атак на удаленные сервера, взлома других компьютеров и т. п.

К таким программам можно отнести известные:

От чего надо защищаться в первую очередь?

Во-первых, это вирусы (Virus, Worm) и всевозможные виды практически бесполезной информации (обычно рекламы), принудительно рассылаемой абонентам электронной почты (Spam). По различным данным в 2013 году вирусным атакам было подвержено от 80 до 85 процентов компаний во всем мире. И эта цифра продолжает расти.

Далее следует назвать вредоносные программы типа "троянский конь" (Trojan Horse), которые могут быть незаметно для владельца установлены на его компьютер и также незаметно функционировать на нем. Простые варианты "троянского коня" выполняют какую-либо одну функцию — например, кражу паролей, но есть и более "продвинутые" экземпляры, которые реализуют широкий спектр функций для удаленного управления компьютером, включая просмотр содержимого каталогов, перехват всех вводимых с клавиатуры команд, кражу или искажение данных и информации, изменение файлов и содержания полей баз данных.

Другим распространенным типом атак являются действия, направленные на выведение из строя того или иного узла сети. Эти атаки получили название "отказ в обслуживании" (Denial of Service — DoS), и на сегодняшний день известно более сотни различных вариантов этих действий. Выше отмечалось, что выведение из строя узла сети на несколько часов может привести к очень серьезным последствиям. Например, выведение из строя сервера платежной системы банка приведет к невозможности осуществления платежей и, как следствие, к большим прямым и косвенным финансовым и рейтинговым потерям.

Атаки и угрозы такого типа являются наиболее частыми, однако существуют и другие угрозы, которые могут привести к серьезным последствиям. Например, система обнаружения атак RealSecure обнаруживает более 1000 различных событий, влияющих на безопасность и относящихся к внешним атакам. Американская организация US-CERT (http://www.vnunet.com/vnunet/news/2143314/security-industry-gathers), занимающаяся проблемами в области компьютерной безопасности, предложила использовать стандартные названия для интернет-червей и других вредоносных программ. Члены US-CERT назвали свою программу "Общая классификация вредоносных программ" (CME). Цель программы — не вводить пользователей в заблуждение, используя разные названия для одних и тех же вирусов. Например, червь W32.Zotob.E по классификации Symantec в классификации McAfee называется W32/IRCbot.worm!MS05-039, а Trend Micro называет эту программу WORM_RBOT.CBQ.

Сейчас многие вирусы получают свои названия на основании описания или информации, включенной в код программы их создателями. В новой системе вирусы будут использовать номера CME. Первый вирус получит название CME-1.

Подобная система классификации уже существует для описания уязвимостей в программном обеспечении. Общий идентификатор уязвимостей включает себя порядковый номер и год, в котором уязвимость была выявлена. В идентификатор вирусов не включат дату, потому что пользователи часто неправильно воспринимают эту информацию. Они считают, что уязвимость с ранней датой менее опасна, чем уязвимость, выявленная позже.

Инициаторы предложения о CME допускают использование и старых вирусных имен, но надеются, что их система улучшит обмен информацией между антивирусными разработчиками и антивирусным сообществом в целом. Проект уже поддержали Computer Associates, McAfee, Microsoft, Symantec и F-Secure.

Как надо защищаться?

Общие методики защиты от вирусов в обязательном порядке являются обязательной составной частью политики информационной безопасности предприятия. В соответствующих разделах политики следует обязательно прописывать принципы антивирусной защиты, применяемые стандарты и нормативные документы, определяющие порядок действий пользователя при работе в локальной и внешних сетях, его полномочия, применяемые антивирусные средства. Наборы обязательных правил могут быть достаточно разнообразны, однако можно сформулировать в общем виде следующие правила для пользователей:

Аналогично можно сформулировать несколько общих требований к хорошей антивирусной программе. Такая программа должна:

Антивирусное программное обеспечение активно разрабатывается во многих странах. Так например, ученые из Национальной лаборатории Sandia (Sandia Corporation) в Ливерморе, Калифорния, запустили более миллиона ядер (kernel) операционной системы Linux в виртуальной среде.

Эксперимент должен помочь в исследовании поведения ботнетов — сетей из миллионов зараженных вредоносным программным обеспечением компьютеров, используемых для разнообразных атак, например, спам-рассылок или DDoS-атак (Distributed Denial of Service). Один из участников проекта Рон Минник (Ron Minnich) объясняет, что реальные сети трудно поддаются анализу из-за географического распределения входящих в них узлов по всему миру. Однако, используя технологию виртуальных машин на суперкомпьютерном кластере Thunderbird, команде ученых удалось запустить виртуальную систему, сравнимую по масштабам с современными ботнетами. Минник с коллегами рассчитывают, что этот исследовательский проект поможет не только понять принципы работы вредоносных сетей, составленных из множества ПК, но попытаться разработать методики их обезвреживания.

В настоящее время в России используются главным образом два проверенных качественных антивирусных пакета: Dr.WEB и "Антивирус Касперского". Каждая из этих продуктов имеет свою линейку, ориентированную на разные сферы применения — для использования на локальных компьютерах, для малого и среднего бизнеса, для крупных корпоративных клиентов, для защиты локальных сетей, для почтовых, файловых серверов, серверов приложений. Оба продукта, безусловно, отвечают всем вышеперечисленным требованиям. Материалы по этим пакетам можно найти на сайтах указанных компаний.

Современные средства биометрической идентификации

В настоящее время всё наряду с указанными выше средствами защиты информации в системах и сетях шире применяются биометрические системы безопасности. По данным аналитической компании Frost&Sullivan, общий объем продаж биометрического оборудования в Америке в 2000 году не превысил 86,8 млн. долларов, вырос в 2001 году до 160,3 млн. долларов и превысил в 2012 году 9 миллиардов долларов. В настоящее время рынок таких устройств перевалил за десятки миллиардов долларов в год.

Биометрические технологии идентификации имеют ряд преимуществ перед традиционными средствами. Под биометрией понимают методы автоматической идентификации человека и подтверждения личности, основанные на физиологических или поведенческих характеристиках (рис. 6.20).

Наиболее часто применяются три основных биометрических метода — это распознавание человека по отпечаткам пальцев, по радужной оболочке глаза и по изображению лица. По информации консалтинговой компании International Biometric Group из Нью-Йорка, наиболее распространенной технологией стало сканирование отпечатков пальцев.

Отмечается, что из 127 млн. долларов, вырученных от продажи биометрических устройств, 44% приходится на дактилоскопические сканеры. Системы распознавания черт лица занимают второе место по уровню спроса, который составляет 14%, далее следуют устройства распознавания по форме ладони (13%), по голосу (10%) и радужной оболочке глаза (8%). Устройства верификации подписи в этом списке составляют 2%.

Система биометрических параметров для идентификации личности


Рис. 6.20.  Система биометрических параметров для идентификации личности

Преимущества биометрических систем безопасности очевидны. Уникальные человеческие качества хороши тем, что их трудно подделать, трудно оставить фальшивый отпечаток пальца при помощи своего собственного или сделать радужную оболочку своего глаза похожей на чью-то другую.

В отличие от бумажных идентификаторов (паспорт, водительское удостоверение или иное удостоверение личности), от пароля или персонального идентификационного номера (ПИН), биометрические характеристики невозможно забыть или потерять. Кроме того, в силу своей уникальности они используются для предотвращения воровства или мошенничества.

Методы распознавания по изображению лица могут работать с двухмерным или с трехмерным изображением (так называемые 2D- и 3D-фото). Стоит отметить, что идентификация человека по чертам лица — одно из самых динамично развивающихся направлений в биометрической индустрии. Привлекательность данного метода основана на том, что он наиболее близок к тому, как люди обычно идентифицируют друг друга. Распространение мультимедийных технологий, благодаря которому все чаще можно встретить видеокамеры, установленные на городских улицах и площадях, на вокзалах, в аэропортах и других местах скопления людей, определило развитие этого направления.

Распознавание лица предусматривает выполнение любой из следующих функций: аутентификация (установление подлинности "один в один") или идентификация (поиск соответствия "один из многих"). Система автоматически оценивает качество изображения для опознания лица и, если необходимо, способна его улучшить. Она также создает изображение лица из сегментов данных, генерирует цифровой код или внутренний шаблон, уникальный для каждого индивидуума (рис. 6.21).

Трёхмерное изображение лица в системе идентификации человека


Рис. 6.21.  Трёхмерное изображение лица в системе идентификации человека

Трехмерная фотография — новейшая биометрическая технология, созданная отечественными разработчиками около пяти лет назад. Трехмерное фото, занимая всего 5 Кбайт, может быть записано в биометрический паспорт; оно увеличивает точность идентификации личности и повышает надежность автоматической сверки документов. Эксперты отмечают, что уровень распознавания трехмерной фотографии составляет более 90%, тогда как у двухмерного изображения этот показатель редко превышает 50%.

Биометрические технологии призваны обеспечить повышение надежности и эффективности сверки документов, предназначены для электронного документирования (логирования) всех сверок, а также для эффективной и надежной идентификации личности человека в широком спектре ситуаций (рис. 6.22).

Один из авторов книги (В.И.Кияев) проходит биометрический контроль в аэропорту Сан-Франциско


Рис. 6.22.  Один из авторов книги (В.И.Кияев) проходит биометрический контроль в аэропорту Сан-Франциско

При решении этой задачи возможны два сценария: двойная или тройная верификация. Двойная верификация подразумевает сверку биометрического шаблона, записанного в электронном паспорте или визе, с биометрическими характеристиками проверяемого субъекта.

Тройная верификация, в свою очередь, предполагает дополнительную сверку двух указанных характеристик с шаблоном, хранящимся в общегосударственном регистре биометрических данных. При этом сценарии любая попытка подделки документа становится бессмысленной, поскольку тройная верификация выявит несоответствие с шаблоном, записанным в государственный регистр при выдаче документа.

Еще одна задача, связанная в основном с выдачей паспорта или визы, заключается в проверке того факта, что аналогичный документ не выдавался ранее гражданину с теми же биометрическими данными, но проходившему под другим именем, а также в сверке биометрических данных гражданина с базами данных оперативных и специальных служб. И в том и в другом случае решение задачи предполагает использование биометрических методов в режиме идентификации, при этом размер баз данных может быть очень большим.

Для решения первой задачи (двойной и тройной верификации) допускается использовать любой из трех методов (по фотографии лица, по отпечаткам пальцев или радужной оболочке), которые дают приемлемую точность. Для решения второй задачи (идентификации гражданина по большой базе данных) необходимы комбинированные методы.

По мнению экспертов, наиболее обоснованное решение при внедрении биометрических методов — это первичный сбор и занесение в единый государственный регистр, а также в электронные идентификационные документы как дактилоскопической информации (с двух пальцев), так и двух изображений лица (двухмерного и трехмерного). При этом для решения задачи верификации, подразумевающей сверку документов при пересечении гражданами границ, достаточно комбинированного (2D + 3D) метода распознавания лица. Этот бесконтактный метод обеспечивает максимальную измеряемость биометрической характеристики (иными словами, максимальную скорость верификации и прохода), следовательно, он не замедлит, а ускорит прохождение пассажиропотока через точки контроля.

Точность 3D- и тем более комбинированного метода высока и отвечает всем требованиям в режиме верификации, а также в режиме идентификации с не очень большими (до 10 тыс. человек) оперативными базами данных (пример - список лиц, объявленных в розыск). Кроме того, использование обычной двухмерной фотографии — во-первых, общепринятая практика, во-вторых, позволяет оператору принять окончательное решение или провести визуальное сравнение с несколькими наиболее похожими индивидуумами из базы данных. Благодаря этому можно увеличить размер базы данных для оперативной идентификации до нескольких сотен тысяч человек.

Использование дактилоскопической информации предполагается только в момент проверки личности, до выдачи документа, а также при необходимости задержания гражданина и предъявлении обвинений. Это позволяет повысить уровень защиты данных, ограничив круг лиц, имеющих право доступа к записанной в паспорте дактилоскопической информации, только сотрудниками соответствующих правоохранительных служб.

В июле 2005 году Федеральное агентство по техническому регулированию и метрологии РФ направило в Международный подкомитет по стандартизации в области биометрии при ISO официальное предложение, касающееся изменения международного стандарта в области биометрии. Суть предлагаемой поправки заключается во включении трехмерного цифрового изображения лица, наряду с обычной двухмерной фотографией, в формат данных, предназначаемый для хранения, обмена и использования при автоматическом распознавании личности. После утверждения проекта, под цифровым изображением лица будут понимать формат данных, включающий как обычную двухмерную, так и трехмерную фотографию. Немного ранее, в феврале 2005 года, по инициативе компании A4Vision, поддержанной, в частности, Oracle, Motorola, Unisys, Logitech, аналогичная поправка к национальному стандарту была одобрена в США. Заметим, что компания A4Vision (http://www.a4vision.com), основанная нашими соотечественниками, первой разработала технологию трехмерного распознавания лиц и, выйдя на рынок США, инициировала процедуру изменения американского стандарта.

Лекция 7. Обеспечение интегральной безопасности

В лекции рассказывается об интегральной безопасности информационных систем.

Обеспечение интегральной безопасности информационных систем и сетей

Вследствие высокой степени глобализации организационных структур, бизнес-моделей, знаний и технологий современная высокотехнологичная компания часто географически распределена в пространстве, а её деятельность — во времени (рис. 7.1). Всё это налагает особые условие на формирование структуры вычислительных и информационных систем, поддерживающих такую деятельность, и на обеспечение их безопасности.

Распределенная информационная система


Рис. 7.1.  Распределенная информационная система

Развитие информационных и нанотехнологий, методов и средств программирования, цифровой обработки сигналов и технологий распознавания образов привело, в свою очередь, к быстрому развитию средств защиты информации, информационных систем и сетей (рис. 7.2).

В связи с многообразием задач защиты информации и программно-аппаратных средств, реализующих защиту, сформировалось три основных подхода осуществления информационной безопасности:

  1. Частный подход основывается на решении локальных задач обеспечения информационной безопасности. Этот подход является малоэффективным, но достаточно часто используется, так как не требует больших финансовых и интеллектуальных затрат.
  2. Комплексный подход реализуется решением совокупности локальных задач по единой программе. Этот подход в настоящее время применяется наиболее часто.
  3. Интегральный подход основан на объединении различных вычислительных подсистем ИС, подсистем связи, подсистем обеспечения безопасности в единую информационную систему с общими техническими средствами, каналами связи, программным обеспечением и базами данных.

Развитие технологий защиты информации


Рис. 7.2.  Развитие технологий защиты информации

Наряду с системной и функциональной интеграцией ИС в последнее время стала активно развиваться сфера интегральной информационной безопасность (Integral Information Safety — IIS).

Это такое состояние условий функционирования сотрудников, объектов, технических средств и систем, при котором они надежно защищены от возможных угроз в ходе непрерывного процесса подготовки, хранения, передачи и обработки информации.

Интегральная безопасность информационных систем включает в себя следующие составляющие:

Задача обеспечения ИИБ появилась вместе с проблемой надежного хранения информации и безопасной передачи её пользователю. На современном этапе интегральный подход предполагает обязательную непрерывность процесса обеспечения безопасности как во времени (в течение всей "жизни" ИС), так и в пространстве (по всему технологическому циклу деятельности) с обязательным учетом всех возможных видов угроз (несанкционированный доступ, съем информации, терроризм, пожар, стихийные бедствия и т. п.).

В какой бы форме ни применялся интегральный подход, он связан с решением ряда сложных разноплановых частных задач в их тесной взаимосвязи. Наиболее очевидными из них являются задачи разграничения доступа к информации, ее технического и криптографического "закрытия", устранение паразитных излучений технических средств, технической и физической укрепленности объектов, охраны и оснащения их тревожной сигнализацией.

На рис. 7.3 представлена блок-схема интегрального комплекса физической защиты объекта, обеспечивающего функционирование всех рассмотренных выше систем, а на рис. 7.4 — соотношение эффективности современных электронных средств контроля физического доступа [Барсуков В., http://www.jetinfo.ru].

Стандартный набор средств комплексной защиты информации в составе современной ИС обычно содержит следующие компоненты:

Блок-схема интегрального комплекса физической защиты информационной инфраструктуры


Рис. 7.3.  Блок-схема интегрального комплекса физической защиты информационной инфраструктуры

Сравнение эффективности современных электронных средств, используемых для контроля доступа


Рис. 7.4.  Сравнение эффективности современных электронных средств, используемых для контроля доступа

Схема взаимодействия внутренней  ЛВС компании с внешним пространством Internet


Рис. 7.5.  Схема взаимодействия внутренней ЛВС компании с внешним пространством Internet

Защита информации на файловом уровне. Эти технологии позволяют скрыть конфиденциальную информацию пользователя на жестком диске компьютера или на сетевых дисках путем кодирования содержимого файлов, каталогов и дисков. Доступ к данной информации осуществляется по предъявлению ключа, который может вводиться с клавиатуры, храниться и предоставляться со смарт-карты, HASP-ключей или USB-ключей и прочих токенов.

Помимо вышеперечисленных функций указанные средства позволяют мгновенно "уничтожить" информацию при подаче сигнала "тревога" и при "входе под принуждением", а также блокировать компьютер в перерывах между сеансами работы.

Технологии токенов (смарт-карты, touch-memory, ключи для USB-портов, скрытые цифровые маркеры). Электронные ключи-жетоны (Token) являются средством повышения надежности защиты данных на основе гарантированной идентификации пользователя. Токены являются "контейнерами" для хранения персональных данных пользователя системы и некоторых его паролей.

Основным элементом токена является микроконтроллер, позволяющий создавать ключи с уникальным набором свойств. Благодаря микроконтроллеру усложняется логика работы ключа, которая делает ее более интеллектуальной (рис. 7.6).

Базовые возможности современных токенов:

Основное преимущество токена заключается в том, что персональная информация всегда находится на носителе (смарт-карте, ключе и т. д.) и предъявляется только во время доступа к системе или компьютеру.

Архитектура смарт-карты


Рис. 7.6.  Архитектура смарт-карты

Технология интеллектуальных карт позволяет унифицировать правила доступа и поместить на одном персональном электронном носителе систему паролей для доступа на различные устройства и системы кодирования и декодирования информации.

В настоящее время получают распространение различного вида интеллектуальные карты с системой персональной аутентификации на базе биометрической информации, которая считывается с руки пользователя. Таким "ключом" может воспользоваться только тот пользователь, на которого настроен этот ключ (рис. 7.7).

Классификация интеллектуальных карт


Рис. 7.7.  Классификация интеллектуальных карт

Скрытые цифровые маркеры (СЦМ) представляют собой специальный программы, которые встраиваются в защищаемый объект. Такие маркеры "индивидуализируют" объект, защищая тем самым от подмены или исправления, или выполняют общие защитные функции от несанкционированного чтения или копирования (рис. 7.8).

Общие функции защиты на базе технологии скрытых цифровых маркеров


Рис. 7.8.  Общие функции защиты на базе технологии скрытых цифровых маркеров

Межсетевые экраны. Использование технологии межсетевых экранов предлагается для решения таких задач как:

В зависимости от масштабов организации и установленной политики безопасности рекомендуются межсетевые экраны (Firewall), отличающиеся по степени функциональности и по стоимости (межсетевые экраны CheckPoint Firewall-1, Private Internet Exchange (PIX) компании Cisco и другие). Устройства содержательной фильтрации (Content Inspection) устанавливаются, как правило, на входы почтовых серверов для отсечения большого объёма неопасной, но практически бесполезной информации, обычно рекламного характера (Spam), принудительно рассылаемой большому числу абонентов электронной почты.

Антивирусные средства. Лавинообразное распространением вирусов ("червей", "троянских коней"), как отмечалось выше, действительно стало большой проблемой для большинства компаний и государственных учреждений. Сложилось мнение, что основной путь "заражения" компьютеров происходит через Internet, поэтому наилучшее решение, по мнению многих руководителей — отключить корпоративную сеть от "Всемирной паутины" или запретить большинству сотрудников пользоваться ею. При этом не учитывается, что существует множество других путей проникновения вирусов на конкретный компьютер, например, использовании чужих флешек и дисков, пиратское программное обеспечение или персональные компьютеры "общего пользования" (например, опасность представляют домашние или студенческие компьютеры, если на них работает более одного человека). Системное применение соответствующих политик ИБ и лицензионных антивирусных средств (например, Лаборатории Касперского или Dr.Web) существенно уменьшает опасность "вирусного" заражения.

Защищенные виртуальные частные сети. Для защиты информации, передаваемой по открытым каналам связи, поддерживающим протоколы TCP/IP, существует ряд программных продуктов, предназначенных для построения защищенных виртуальных частных сетей (VPN) на основе международных стандартов Internet Security Protocol, (рис. 7.9).

Компоновка VPN на основе международных стандартов и протоколов


Рис. 7.9.  Компоновка VPN на основе международных стандартов и протоколов

Виртуальные сети создаются чаще всего на базе арендуемых и коммутируемых каналов связи в сетях общего пользования (Internet). Для небольших и средних компаний они являются хорошей альтернативой изолированным корпоративным сетям, так как обладают очевидными преимуществами: высокая гарантированная надёжность, изменяемая топология, простота конфигурирования, лёгкость масштабирования, контроль всех событий и действий в сети, относительно невысокая стоимость аренды каналов и коммуникационного оборудования.

Продукты работают в операционных системах Windows и Solaris и обеспечивают:

Системы шифрования с открытым криптографическим интерфейсом позволяют использовать различные реализации криптоалгоритмов. Это даёт возможность использования продуктов в любой стране мира в соответствии с принятыми национальными стандартами. Наличие разнообразных модификаций (линейка продуктов включает до десятка наименований для клиентских, серверных платформ, для сети масштаба офиса, для генерации ключевой информации) позволяет подбирать оптимальное по стоимости и надежности решение с возможностью постепенного наращивания мощности системы защиты.

Технологии обнаружения атак (Intrusion Detection). Постоянное изменение сети (появление новых рабочих станций, реконфигурация программных средств, и т.п.) может привести к появлению новых уязвимых мест, угроз и возможностей атак и информационные ресурсы, и на саму систему защиты. В связи с этим особенно важно своевременное их выявление и внесение изменений в соответствующие настройки информационного комплекса и его подсистем, и в том числе, в подсистему защиты. Это означает, что рабочее место администратора системы должно быть укомплектовано специализированными программными средствами обследования сетей и выявления уязвимых мест (наличия "дыр") для проведения атак "извне" и "снаружи", а также комплексной оценки степени защищенности от атак нарушителей. Например, в состав продуктов ЭЛВИС+, Net Pro VPN входят наиболее мощные среди обширного семейства коммерческих пакетов продукты компании Internet Security Systems (Internet Scanner и System Security Scanner), а также продукты компании Cisco: система обнаружения несанкционированного доступа NetRanger и сканер уязвимости системы безопасности NetSonar (http://www.extrim.ru/instruments_vpn.asp).

Инфраструктура открытых ключей (PKI — Public Key Infrastruture). Основными функциями PKI являются: поддержка жизненного цикла цифровых ключей и сертификатов (т.е. их генерация, распределение, отзыв и пр.), поддержка процесса идентификации и аутентификации пользователей, и реализация механизма интеграции существующих приложений и всех компонент подсистемы безопасности. Несмотря на существующие международные стандарты, определяющие функционирование системы PKI и способствующие ее взаимодействию с различными средствами защиты информации, к сожалению, не каждое средство информационной защиты, даже если его производитель декларирует соответствие стандартам, может работать с любой системой PKI. В настоящее время всё часще используются комплексные решения на базе IPSec и PKI (рис. 7.9).

В нашей стране только начинают появляться компании, предоставляющие услуги по анализу, проектированию и разработке инфраструктуры открытых ключей. Поскольку при возрастающих масштабах ведомственных и корпоративных сетей VPN-продукты не смогут работать без PKI, только у разработчиков и поставщиков VPN есть опыт работы в этой области.

В зависимости от масштаба деятельности компании методы и средства обеспечения ИБ могут различаться, но любой квалифицированный CIO или специалист IT-службы скажет, что любая проблема в области ИБ не решается односторонне — всегда требуется комплексный, интегральный подход.

Приходится с сожалением констатировать, что в российском бизнесе высшие менеджеры компаний и руководители крупных государственных организаций часто считают, что все проблемы в сфере ИБ можно решить, не прилагая особых организационных, технических и финансовых усилий. Во многих организацияхи руководители и даже специалисты пренебрегают международными стандартами и методами комплексного проектирования равнопрочных систем защиты, концентрируя свои усилия на применении отдельных, не связанных между собой технических средств, чему способствует отсутствие соответствующих отечественных стандартов и руководящих документов.

Нередко со стороны людей, позиционирующих себя в качестве IT-специалистов в российских компаниях, приходится слышать высказывания: "Проблемы информационной безопасности в нашей компании мы уже решили — установили межсетевой экран и купили лицензию на средства антивирусной защиты. Мы считаем, что этого достаточно".

Такой подход свидетельствует, что существование проблемы уже признается, но сильно недооценивается масштаб и сложность необходимых срочных мероприятий по ее решению. В тех компаниях, где руководство и специалисты всерьез задумались над тем, как обезопасить свой бизнес и избежать финансовых потерь, признано, что одними локальными мерами или радикальными "подручными" средствами уже не обойтись, а нужно применять именно системный комплексный подход.

Таким образом, защита должна быть ориентирована на комплексное обеспечение эффективного решения основных, функциональных задач всей информационной системы. Методологически решение этих задач следует осуществлять как проектирование сложной, достаточно автономной программно-аппаратной системы во и взаимодействии с окружающими ее функциональными задачами ИС. При этом следует определять и ранжировать функциональные компоненты ИС по степени необходимой защиты, оценивать серьезность различных внешних и внутренних угроз безопасности, выделять методы, средства и нормативные документы, адекватные видам угроз и требуемой защите, оценивать нужные для этого ресурсы различных видов. Планирование и комплексная разработка проекта системы программной защиты должны обеспечивать высокое качество последующего жизненного цикла всей ИС.

В заключение ещё раз отметим, что в условиях динамичного развития рынка и усложнения его инфраструктуры информация становится таким же стратегическим ресурсом, как и традиционные материальные и энергетические. Современные технологии, позволяющие находить, создавать, хранить, перерабатывать данные и обеспечивать эффективные способы представления информации, стали важным фактором конкурентоспособности и средством повышения эффективности управления всеми сферами общественной жизнедеятельности. Уровень информатизации является сегодня одним из главных факторов успешного развития всякого предприятия. В связи с этим в последнем десятилетии ХХ века и в начале века XXI чрезвычайную актуальность приобрели вопросы защиты конфиденциальной и служебной государственной и корпоративной информации, безопасности информационных систем и сетей.

Дополнения


Литература